Texture Similarity Measure Using Kullback-Leibler Divergence between Gamma Distributions View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2002

AUTHORS

John Reidar Mathiassen , Amund Skavhaug , Ketil Bø

ABSTRACT

We propose a texture similarity measure based on the Kullback-Leibler divergence between gamma distributions (KLGamma). We conjecture that the spatially smoothed Gabor filter magnitude responses of some classes of visually homogeneous stochastic textures are gamma distributed. Classification experiments with disjoint test and training images, show that the KLGamma measure performs better than other parametric measures. It approaches, and under some conditions exceeds, the classification performance of the best non-parametric measures based on binned marginal histograms, although it has a computational cost at least an order of magnitude less. Thus, the KLGamma measure is well suited for use in real-time image segmentation algorithms and time-critical texture classification and retrieval from large databases. More... »

PAGES

133-147

Book

TITLE

Computer Vision — ECCV 2002

ISBN

978-3-540-43746-8
978-3-540-47977-2

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/3-540-47977-5_9

DOI

http://dx.doi.org/10.1007/3-540-47977-5_9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1045121416


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "SINTEF", 
          "id": "https://www.grid.ac/institutes/grid.4319.f", 
          "name": [
            "SINTEF Fisheries and Aquaculture, N-7465\u00a0Trondheim, Norway"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mathiassen", 
        "givenName": "John Reidar", 
        "id": "sg:person.01270532474.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01270532474.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Norwegian University of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.5947.f", 
          "name": [
            "Department of Engineering Cybernetics (ITK), NTNU, N-7491\u00a0Trondheim, Norway"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Skavhaug", 
        "givenName": "Amund", 
        "id": "sg:person.014615100371.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014615100371.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Norwegian University of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.5947.f", 
          "name": [
            "Department of Computer and Information Science (IDI), NTNU, N-7491\u00a0Trondheim, Norway"
          ], 
          "type": "Organization"
        }, 
        "familyName": "B\u00f8", 
        "givenName": "Ketil", 
        "id": "sg:person.014724230011.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014724230011.37"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1126/science.7233231", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007314413"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0031-3203(99)00181-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008842078"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0042-6989(80)90065-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028999658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0042-6989(80)90065-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028999658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0031-3203(98)00038-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038549331"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspb.1998.0303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044166119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/34.41384", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061156266"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/34.531803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061156442"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/josaa.2.001160", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065160106"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2002", 
    "datePublishedReg": "2002-01-01", 
    "description": "We propose a texture similarity measure based on the Kullback-Leibler divergence between gamma distributions (KLGamma). We conjecture that the spatially smoothed Gabor filter magnitude responses of some classes of visually homogeneous stochastic textures are gamma distributed. Classification experiments with disjoint test and training images, show that the KLGamma measure performs better than other parametric measures. It approaches, and under some conditions exceeds, the classification performance of the best non-parametric measures based on binned marginal histograms, although it has a computational cost at least an order of magnitude less. Thus, the KLGamma measure is well suited for use in real-time image segmentation algorithms and time-critical texture classification and retrieval from large databases.", 
    "editor": [
      {
        "familyName": "Heyden", 
        "givenName": "Anders", 
        "type": "Person"
      }, 
      {
        "familyName": "Sparr", 
        "givenName": "Gunnar", 
        "type": "Person"
      }, 
      {
        "familyName": "Nielsen", 
        "givenName": "Mads", 
        "type": "Person"
      }, 
      {
        "familyName": "Johansen", 
        "givenName": "Peter", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/3-540-47977-5_9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-43746-8", 
        "978-3-540-47977-2"
      ], 
      "name": "Computer Vision \u2014 ECCV 2002", 
      "type": "Book"
    }, 
    "name": "Texture Similarity Measure Using Kullback-Leibler Divergence between Gamma Distributions", 
    "pagination": "133-147", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/3-540-47977-5_9"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d6edb1ce5116ed0a85280fd7e80a28ec51ac2c9885c31bb1d50316bf572325da"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1045121416"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/3-540-47977-5_9", 
      "https://app.dimensions.ai/details/publication/pub.1045121416"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T15:23", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000271.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/3-540-47977-5_9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-540-47977-5_9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-540-47977-5_9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-540-47977-5_9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-540-47977-5_9'


 

This table displays all metadata directly associated to this object as RDF triples.

122 TRIPLES      23 PREDICATES      35 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/3-540-47977-5_9 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N6ee20fffe12646ae889cd183e3211571
4 schema:citation https://doi.org/10.1016/0042-6989(80)90065-6
5 https://doi.org/10.1016/s0031-3203(98)00038-7
6 https://doi.org/10.1016/s0031-3203(99)00181-8
7 https://doi.org/10.1098/rspb.1998.0303
8 https://doi.org/10.1109/34.41384
9 https://doi.org/10.1109/34.531803
10 https://doi.org/10.1126/science.7233231
11 https://doi.org/10.1364/josaa.2.001160
12 schema:datePublished 2002
13 schema:datePublishedReg 2002-01-01
14 schema:description We propose a texture similarity measure based on the Kullback-Leibler divergence between gamma distributions (KLGamma). We conjecture that the spatially smoothed Gabor filter magnitude responses of some classes of visually homogeneous stochastic textures are gamma distributed. Classification experiments with disjoint test and training images, show that the KLGamma measure performs better than other parametric measures. It approaches, and under some conditions exceeds, the classification performance of the best non-parametric measures based on binned marginal histograms, although it has a computational cost at least an order of magnitude less. Thus, the KLGamma measure is well suited for use in real-time image segmentation algorithms and time-critical texture classification and retrieval from large databases.
15 schema:editor N5ce9d871b7794e468fb202534215c9ce
16 schema:genre chapter
17 schema:inLanguage en
18 schema:isAccessibleForFree false
19 schema:isPartOf N60170bcc5c544a62b2615125b5ef254b
20 schema:name Texture Similarity Measure Using Kullback-Leibler Divergence between Gamma Distributions
21 schema:pagination 133-147
22 schema:productId N050dd406750a47ad877dbc0e83e400fd
23 N4ea13b9240d14514974e1a1fb193f8e8
24 N51cd544ebf6044028996041e4b8a6f92
25 schema:publisher N3348c992426c4ddbabf20112c40cf04b
26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045121416
27 https://doi.org/10.1007/3-540-47977-5_9
28 schema:sdDatePublished 2019-04-15T15:23
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher Na58ffe2b57f74c458f65995829a80ad9
31 schema:url http://link.springer.com/10.1007/3-540-47977-5_9
32 sgo:license sg:explorer/license/
33 sgo:sdDataset chapters
34 rdf:type schema:Chapter
35 N050dd406750a47ad877dbc0e83e400fd schema:name readcube_id
36 schema:value d6edb1ce5116ed0a85280fd7e80a28ec51ac2c9885c31bb1d50316bf572325da
37 rdf:type schema:PropertyValue
38 N1a353256f1b6432f87205c253097777c rdf:first N2c19b69807de4e86be5cc3cf0fe41834
39 rdf:rest Ne0c0b348d0444f06a9204c45251cd17b
40 N219d1d4bede44454bc7387cc0ef61584 schema:familyName Johansen
41 schema:givenName Peter
42 rdf:type schema:Person
43 N2c19b69807de4e86be5cc3cf0fe41834 schema:familyName Nielsen
44 schema:givenName Mads
45 rdf:type schema:Person
46 N3348c992426c4ddbabf20112c40cf04b schema:location Berlin, Heidelberg
47 schema:name Springer Berlin Heidelberg
48 rdf:type schema:Organisation
49 N3e511a270e7242c6ba95cb6c2e2ee353 rdf:first sg:person.014724230011.37
50 rdf:rest rdf:nil
51 N4ea13b9240d14514974e1a1fb193f8e8 schema:name dimensions_id
52 schema:value pub.1045121416
53 rdf:type schema:PropertyValue
54 N51cd544ebf6044028996041e4b8a6f92 schema:name doi
55 schema:value 10.1007/3-540-47977-5_9
56 rdf:type schema:PropertyValue
57 N5ce9d871b7794e468fb202534215c9ce rdf:first N74215abc0418434e9f68e2fadab3f149
58 rdf:rest N6538838f31884de99f193015e2dd53b5
59 N60170bcc5c544a62b2615125b5ef254b schema:isbn 978-3-540-43746-8
60 978-3-540-47977-2
61 schema:name Computer Vision — ECCV 2002
62 rdf:type schema:Book
63 N6538838f31884de99f193015e2dd53b5 rdf:first N80517d43f05a4ee7a4819388b2f0827a
64 rdf:rest N1a353256f1b6432f87205c253097777c
65 N6ee20fffe12646ae889cd183e3211571 rdf:first sg:person.01270532474.99
66 rdf:rest Nc284d9abf48d47a9beb6feec7f2dcabd
67 N74215abc0418434e9f68e2fadab3f149 schema:familyName Heyden
68 schema:givenName Anders
69 rdf:type schema:Person
70 N80517d43f05a4ee7a4819388b2f0827a schema:familyName Sparr
71 schema:givenName Gunnar
72 rdf:type schema:Person
73 Na58ffe2b57f74c458f65995829a80ad9 schema:name Springer Nature - SN SciGraph project
74 rdf:type schema:Organization
75 Nc284d9abf48d47a9beb6feec7f2dcabd rdf:first sg:person.014615100371.03
76 rdf:rest N3e511a270e7242c6ba95cb6c2e2ee353
77 Ne0c0b348d0444f06a9204c45251cd17b rdf:first N219d1d4bede44454bc7387cc0ef61584
78 rdf:rest rdf:nil
79 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
80 schema:name Information and Computing Sciences
81 rdf:type schema:DefinedTerm
82 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
83 schema:name Artificial Intelligence and Image Processing
84 rdf:type schema:DefinedTerm
85 sg:person.01270532474.99 schema:affiliation https://www.grid.ac/institutes/grid.4319.f
86 schema:familyName Mathiassen
87 schema:givenName John Reidar
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01270532474.99
89 rdf:type schema:Person
90 sg:person.014615100371.03 schema:affiliation https://www.grid.ac/institutes/grid.5947.f
91 schema:familyName Skavhaug
92 schema:givenName Amund
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014615100371.03
94 rdf:type schema:Person
95 sg:person.014724230011.37 schema:affiliation https://www.grid.ac/institutes/grid.5947.f
96 schema:familyName
97 schema:givenName Ketil
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014724230011.37
99 rdf:type schema:Person
100 https://doi.org/10.1016/0042-6989(80)90065-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028999658
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1016/s0031-3203(98)00038-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038549331
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1016/s0031-3203(99)00181-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008842078
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1098/rspb.1998.0303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044166119
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1109/34.41384 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061156266
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1109/34.531803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061156442
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1126/science.7233231 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007314413
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1364/josaa.2.001160 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065160106
115 rdf:type schema:CreativeWork
116 https://www.grid.ac/institutes/grid.4319.f schema:alternateName SINTEF
117 schema:name SINTEF Fisheries and Aquaculture, N-7465 Trondheim, Norway
118 rdf:type schema:Organization
119 https://www.grid.ac/institutes/grid.5947.f schema:alternateName Norwegian University of Science and Technology
120 schema:name Department of Computer and Information Science (IDI), NTNU, N-7491 Trondheim, Norway
121 Department of Engineering Cybernetics (ITK), NTNU, N-7491 Trondheim, Norway
122 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...