Texture Similarity Measure Using Kullback-Leibler Divergence between Gamma Distributions View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2002

AUTHORS

John Reidar Mathiassen , Amund Skavhaug , Ketil Bø

ABSTRACT

We propose a texture similarity measure based on the Kullback-Leibler divergence between gamma distributions (KLGamma). We conjecture that the spatially smoothed Gabor filter magnitude responses of some classes of visually homogeneous stochastic textures are gamma distributed. Classification experiments with disjoint test and training images, show that the KLGamma measure performs better than other parametric measures. It approaches, and under some conditions exceeds, the classification performance of the best non-parametric measures based on binned marginal histograms, although it has a computational cost at least an order of magnitude less. Thus, the KLGamma measure is well suited for use in real-time image segmentation algorithms and time-critical texture classification and retrieval from large databases. More... »

PAGES

133-147

Book

TITLE

Computer Vision — ECCV 2002

ISBN

978-3-540-43746-8
978-3-540-47977-2

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/3-540-47977-5_9

DOI

http://dx.doi.org/10.1007/3-540-47977-5_9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1045121416


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "SINTEF", 
          "id": "https://www.grid.ac/institutes/grid.4319.f", 
          "name": [
            "SINTEF Fisheries and Aquaculture, N-7465\u00a0Trondheim, Norway"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mathiassen", 
        "givenName": "John Reidar", 
        "id": "sg:person.01270532474.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01270532474.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Norwegian University of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.5947.f", 
          "name": [
            "Department of Engineering Cybernetics (ITK), NTNU, N-7491\u00a0Trondheim, Norway"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Skavhaug", 
        "givenName": "Amund", 
        "id": "sg:person.014615100371.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014615100371.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Norwegian University of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.5947.f", 
          "name": [
            "Department of Computer and Information Science (IDI), NTNU, N-7491\u00a0Trondheim, Norway"
          ], 
          "type": "Organization"
        }, 
        "familyName": "B\u00f8", 
        "givenName": "Ketil", 
        "id": "sg:person.014724230011.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014724230011.37"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1126/science.7233231", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007314413"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0031-3203(99)00181-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008842078"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0042-6989(80)90065-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028999658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0042-6989(80)90065-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028999658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0031-3203(98)00038-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038549331"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspb.1998.0303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044166119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/34.41384", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061156266"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/34.531803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061156442"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/josaa.2.001160", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065160106"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2002", 
    "datePublishedReg": "2002-01-01", 
    "description": "We propose a texture similarity measure based on the Kullback-Leibler divergence between gamma distributions (KLGamma). We conjecture that the spatially smoothed Gabor filter magnitude responses of some classes of visually homogeneous stochastic textures are gamma distributed. Classification experiments with disjoint test and training images, show that the KLGamma measure performs better than other parametric measures. It approaches, and under some conditions exceeds, the classification performance of the best non-parametric measures based on binned marginal histograms, although it has a computational cost at least an order of magnitude less. Thus, the KLGamma measure is well suited for use in real-time image segmentation algorithms and time-critical texture classification and retrieval from large databases.", 
    "editor": [
      {
        "familyName": "Heyden", 
        "givenName": "Anders", 
        "type": "Person"
      }, 
      {
        "familyName": "Sparr", 
        "givenName": "Gunnar", 
        "type": "Person"
      }, 
      {
        "familyName": "Nielsen", 
        "givenName": "Mads", 
        "type": "Person"
      }, 
      {
        "familyName": "Johansen", 
        "givenName": "Peter", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/3-540-47977-5_9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-43746-8", 
        "978-3-540-47977-2"
      ], 
      "name": "Computer Vision \u2014 ECCV 2002", 
      "type": "Book"
    }, 
    "name": "Texture Similarity Measure Using Kullback-Leibler Divergence between Gamma Distributions", 
    "pagination": "133-147", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/3-540-47977-5_9"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d6edb1ce5116ed0a85280fd7e80a28ec51ac2c9885c31bb1d50316bf572325da"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1045121416"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/3-540-47977-5_9", 
      "https://app.dimensions.ai/details/publication/pub.1045121416"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T15:23", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000271.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/3-540-47977-5_9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-540-47977-5_9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-540-47977-5_9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-540-47977-5_9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-540-47977-5_9'


 

This table displays all metadata directly associated to this object as RDF triples.

122 TRIPLES      23 PREDICATES      35 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/3-540-47977-5_9 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nb78fb8b2fbbb47bba78ab60a34f46bc1
4 schema:citation https://doi.org/10.1016/0042-6989(80)90065-6
5 https://doi.org/10.1016/s0031-3203(98)00038-7
6 https://doi.org/10.1016/s0031-3203(99)00181-8
7 https://doi.org/10.1098/rspb.1998.0303
8 https://doi.org/10.1109/34.41384
9 https://doi.org/10.1109/34.531803
10 https://doi.org/10.1126/science.7233231
11 https://doi.org/10.1364/josaa.2.001160
12 schema:datePublished 2002
13 schema:datePublishedReg 2002-01-01
14 schema:description We propose a texture similarity measure based on the Kullback-Leibler divergence between gamma distributions (KLGamma). We conjecture that the spatially smoothed Gabor filter magnitude responses of some classes of visually homogeneous stochastic textures are gamma distributed. Classification experiments with disjoint test and training images, show that the KLGamma measure performs better than other parametric measures. It approaches, and under some conditions exceeds, the classification performance of the best non-parametric measures based on binned marginal histograms, although it has a computational cost at least an order of magnitude less. Thus, the KLGamma measure is well suited for use in real-time image segmentation algorithms and time-critical texture classification and retrieval from large databases.
15 schema:editor N90d32de5df574385b0777d45624a57de
16 schema:genre chapter
17 schema:inLanguage en
18 schema:isAccessibleForFree false
19 schema:isPartOf N7f080a74e5a54707bb8f6b180c444752
20 schema:name Texture Similarity Measure Using Kullback-Leibler Divergence between Gamma Distributions
21 schema:pagination 133-147
22 schema:productId Nc19bd329bbde42d6b39efcf5009b2911
23 Ndb02d65ca9434a05979e099bb8dd4bb0
24 Ne63e763772c84538a2eeb696f9765fb9
25 schema:publisher Nbc553994c51e47248f82c4166b5209d5
26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045121416
27 https://doi.org/10.1007/3-540-47977-5_9
28 schema:sdDatePublished 2019-04-15T15:23
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher N49ca9bd1430d44b0b7e6f9decf4ab12c
31 schema:url http://link.springer.com/10.1007/3-540-47977-5_9
32 sgo:license sg:explorer/license/
33 sgo:sdDataset chapters
34 rdf:type schema:Chapter
35 N0ab25439c3b945d1b521a6a410783460 schema:familyName Sparr
36 schema:givenName Gunnar
37 rdf:type schema:Person
38 N1e8620750e414e4393324debeabdc795 rdf:first N0ab25439c3b945d1b521a6a410783460
39 rdf:rest N829f81e07fdb431684f38c662cd90c2f
40 N46fb9717ce71412d9cc8b3ab3cd0a7ee schema:familyName Heyden
41 schema:givenName Anders
42 rdf:type schema:Person
43 N49ca9bd1430d44b0b7e6f9decf4ab12c schema:name Springer Nature - SN SciGraph project
44 rdf:type schema:Organization
45 N5472f7ba762b4922ac6396509232cb45 schema:familyName Johansen
46 schema:givenName Peter
47 rdf:type schema:Person
48 N7f080a74e5a54707bb8f6b180c444752 schema:isbn 978-3-540-43746-8
49 978-3-540-47977-2
50 schema:name Computer Vision — ECCV 2002
51 rdf:type schema:Book
52 N820deb7804464048819e5219a30a4cf8 rdf:first sg:person.014615100371.03
53 rdf:rest N85737dd696ea4db8818400d858f12fc9
54 N829f81e07fdb431684f38c662cd90c2f rdf:first Nafc16d683bd746799dd5d52f9a7d3a0b
55 rdf:rest Nd8bdd44a8fee442081995b6cd0d080b0
56 N85737dd696ea4db8818400d858f12fc9 rdf:first sg:person.014724230011.37
57 rdf:rest rdf:nil
58 N90d32de5df574385b0777d45624a57de rdf:first N46fb9717ce71412d9cc8b3ab3cd0a7ee
59 rdf:rest N1e8620750e414e4393324debeabdc795
60 Nafc16d683bd746799dd5d52f9a7d3a0b schema:familyName Nielsen
61 schema:givenName Mads
62 rdf:type schema:Person
63 Nb78fb8b2fbbb47bba78ab60a34f46bc1 rdf:first sg:person.01270532474.99
64 rdf:rest N820deb7804464048819e5219a30a4cf8
65 Nbc553994c51e47248f82c4166b5209d5 schema:location Berlin, Heidelberg
66 schema:name Springer Berlin Heidelberg
67 rdf:type schema:Organisation
68 Nc19bd329bbde42d6b39efcf5009b2911 schema:name dimensions_id
69 schema:value pub.1045121416
70 rdf:type schema:PropertyValue
71 Nd8bdd44a8fee442081995b6cd0d080b0 rdf:first N5472f7ba762b4922ac6396509232cb45
72 rdf:rest rdf:nil
73 Ndb02d65ca9434a05979e099bb8dd4bb0 schema:name readcube_id
74 schema:value d6edb1ce5116ed0a85280fd7e80a28ec51ac2c9885c31bb1d50316bf572325da
75 rdf:type schema:PropertyValue
76 Ne63e763772c84538a2eeb696f9765fb9 schema:name doi
77 schema:value 10.1007/3-540-47977-5_9
78 rdf:type schema:PropertyValue
79 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
80 schema:name Information and Computing Sciences
81 rdf:type schema:DefinedTerm
82 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
83 schema:name Artificial Intelligence and Image Processing
84 rdf:type schema:DefinedTerm
85 sg:person.01270532474.99 schema:affiliation https://www.grid.ac/institutes/grid.4319.f
86 schema:familyName Mathiassen
87 schema:givenName John Reidar
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01270532474.99
89 rdf:type schema:Person
90 sg:person.014615100371.03 schema:affiliation https://www.grid.ac/institutes/grid.5947.f
91 schema:familyName Skavhaug
92 schema:givenName Amund
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014615100371.03
94 rdf:type schema:Person
95 sg:person.014724230011.37 schema:affiliation https://www.grid.ac/institutes/grid.5947.f
96 schema:familyName
97 schema:givenName Ketil
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014724230011.37
99 rdf:type schema:Person
100 https://doi.org/10.1016/0042-6989(80)90065-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028999658
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1016/s0031-3203(98)00038-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038549331
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1016/s0031-3203(99)00181-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008842078
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1098/rspb.1998.0303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044166119
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1109/34.41384 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061156266
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1109/34.531803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061156442
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1126/science.7233231 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007314413
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1364/josaa.2.001160 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065160106
115 rdf:type schema:CreativeWork
116 https://www.grid.ac/institutes/grid.4319.f schema:alternateName SINTEF
117 schema:name SINTEF Fisheries and Aquaculture, N-7465 Trondheim, Norway
118 rdf:type schema:Organization
119 https://www.grid.ac/institutes/grid.5947.f schema:alternateName Norwegian University of Science and Technology
120 schema:name Department of Computer and Information Science (IDI), NTNU, N-7491 Trondheim, Norway
121 Department of Engineering Cybernetics (ITK), NTNU, N-7491 Trondheim, Norway
122 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...