Mining Incremental Association Rules with Generalized FP-Tree View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2002-05-28

AUTHORS

Christie I. Ezeife , Yue Su

ABSTRACT

New transaction insertions and old transaction deletions may lead to previously generated association rules no longer being interesting, and new interesting association rules may also appear. Existing association rules maintenance algorithms are Apriori-like, which mostly need to scan the entire database several times in order to update the previously computed frequent or large itemsets, and in particular, when some previous small itemsets become large in the updated database. This paper presents two new algorithms that use the frequent patterns tree (FP-tree) structure to reduce the required number of database scans. One proposed algorithm is the DB-tree algorithm, which stores all the database information in an FP-tree structure and requires no re-scan of the original database for all update cases. The second algorithm is the PotFp-tree (Potential frequent pattern) algorithm, which uses a prediction of future possible frequent itemsets to reduce the number of times the original database needs to be scanned when previous small itemsets become large after database update. More... »

PAGES

147-160

References to SciGraph publications

Book

TITLE

Advances in Artifical Intelligence

ISBN

978-3-540-61291-9
978-3-540-68450-3

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/3-540-47922-8_13

DOI

http://dx.doi.org/10.1007/3-540-47922-8_13

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1025432990


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Windsor", 
          "id": "https://www.grid.ac/institutes/grid.267455.7", 
          "name": [
            "School of Computer Science, University of Windsor, N9B 3P4, Windsor, Ontario, Canada", 
            "School of Computer Science, University of Windsor, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ezeife", 
        "givenName": "Christie I.", 
        "id": "sg:person.01200460536.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200460536.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Windsor", 
          "id": "https://www.grid.ac/institutes/grid.267455.7", 
          "name": [
            "School of Computer Science, University of Windsor, N9B 3P4, Windsor, Ontario, Canada", 
            "School of Computer Science, University of Windsor, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Su", 
        "givenName": "Yue", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1145/223784.223813", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006845698"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/342009.335372", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025244221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-45153-6_3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041583320", 
          "https://doi.org/10.1007/3-540-45153-6_3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-45153-6_3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041583320", 
          "https://doi.org/10.1007/3-540-45153-6_3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-45153-6_3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041583320", 
          "https://doi.org/10.1007/3-540-45153-6_3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icde.1996.492094", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094013387"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/9789812819536_0020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096084080"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2002-05-28", 
    "datePublishedReg": "2002-05-28", 
    "description": "New transaction insertions and old transaction deletions may lead to previously generated association rules no longer being interesting, and new interesting association rules may also appear. Existing association rules maintenance algorithms are Apriori-like, which mostly need to scan the entire database several times in order to update the previously computed frequent or large itemsets, and in particular, when some previous small itemsets become large in the updated database. This paper presents two new algorithms that use the frequent patterns tree (FP-tree) structure to reduce the required number of database scans. One proposed algorithm is the DB-tree algorithm, which stores all the database information in an FP-tree structure and requires no re-scan of the original database for all update cases. The second algorithm is the PotFp-tree (Potential frequent pattern) algorithm, which uses a prediction of future possible frequent itemsets to reduce the number of times the original database needs to be scanned when previous small itemsets become large after database update.", 
    "editor": [
      {
        "familyName": "McCalla", 
        "givenName": "Gordon", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/3-540-47922-8_13", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-540-61291-9", 
        "978-3-540-68450-3"
      ], 
      "name": "Advances in Artifical Intelligence", 
      "type": "Book"
    }, 
    "name": "Mining Incremental Association Rules with Generalized FP-Tree", 
    "pagination": "147-160", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1025432990"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/3-540-47922-8_13"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "792a314085aecb41777731b77f71bb5efd2f84feaffe049d1f17ad74eeef7768"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/3-540-47922-8_13", 
      "https://app.dimensions.ai/details/publication/pub.1025432990"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T07:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000356_0000000356/records_57895_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F3-540-47922-8_13"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-540-47922-8_13'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-540-47922-8_13'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-540-47922-8_13'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-540-47922-8_13'


 

This table displays all metadata directly associated to this object as RDF triples.

88 TRIPLES      23 PREDICATES      31 URIs      19 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/3-540-47922-8_13 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author N0f7161e1063f4651a1b0d275c49fc53d
4 schema:citation sg:pub.10.1007/3-540-45153-6_3
5 https://doi.org/10.1109/icde.1996.492094
6 https://doi.org/10.1142/9789812819536_0020
7 https://doi.org/10.1145/223784.223813
8 https://doi.org/10.1145/342009.335372
9 schema:datePublished 2002-05-28
10 schema:datePublishedReg 2002-05-28
11 schema:description New transaction insertions and old transaction deletions may lead to previously generated association rules no longer being interesting, and new interesting association rules may also appear. Existing association rules maintenance algorithms are Apriori-like, which mostly need to scan the entire database several times in order to update the previously computed frequent or large itemsets, and in particular, when some previous small itemsets become large in the updated database. This paper presents two new algorithms that use the frequent patterns tree (FP-tree) structure to reduce the required number of database scans. One proposed algorithm is the DB-tree algorithm, which stores all the database information in an FP-tree structure and requires no re-scan of the original database for all update cases. The second algorithm is the PotFp-tree (Potential frequent pattern) algorithm, which uses a prediction of future possible frequent itemsets to reduce the number of times the original database needs to be scanned when previous small itemsets become large after database update.
12 schema:editor N70e09d189ad148e1b427eead70a1259c
13 schema:genre chapter
14 schema:inLanguage en
15 schema:isAccessibleForFree true
16 schema:isPartOf N56d6ac5d48cf44548946500acdb4af1a
17 schema:name Mining Incremental Association Rules with Generalized FP-Tree
18 schema:pagination 147-160
19 schema:productId N4414a1e1d3e2450b92acbe3aee14a0ce
20 N4a437eb642d8400b865dff408d9d2645
21 N949c0a7bbf984c38b8f31fd9d49c58fd
22 schema:publisher Nd90234a1581c49f7b4296e4e42c2f614
23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025432990
24 https://doi.org/10.1007/3-540-47922-8_13
25 schema:sdDatePublished 2019-04-16T07:31
26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
27 schema:sdPublisher Nc1af9787f99144749f9690d96798594a
28 schema:url https://link.springer.com/10.1007%2F3-540-47922-8_13
29 sgo:license sg:explorer/license/
30 sgo:sdDataset chapters
31 rdf:type schema:Chapter
32 N0f7161e1063f4651a1b0d275c49fc53d rdf:first sg:person.01200460536.41
33 rdf:rest N7e53d8cea7084a06afc80b1037ae79ee
34 N4414a1e1d3e2450b92acbe3aee14a0ce schema:name dimensions_id
35 schema:value pub.1025432990
36 rdf:type schema:PropertyValue
37 N4a437eb642d8400b865dff408d9d2645 schema:name readcube_id
38 schema:value 792a314085aecb41777731b77f71bb5efd2f84feaffe049d1f17ad74eeef7768
39 rdf:type schema:PropertyValue
40 N56d6ac5d48cf44548946500acdb4af1a schema:isbn 978-3-540-61291-9
41 978-3-540-68450-3
42 schema:name Advances in Artifical Intelligence
43 rdf:type schema:Book
44 N70e09d189ad148e1b427eead70a1259c rdf:first N749bd88bb1a34524a3aad01a1a2d7873
45 rdf:rest rdf:nil
46 N749bd88bb1a34524a3aad01a1a2d7873 schema:familyName McCalla
47 schema:givenName Gordon
48 rdf:type schema:Person
49 N7e53d8cea7084a06afc80b1037ae79ee rdf:first Nb872d8dd0fc34b64b2a88f992696f52c
50 rdf:rest rdf:nil
51 N949c0a7bbf984c38b8f31fd9d49c58fd schema:name doi
52 schema:value 10.1007/3-540-47922-8_13
53 rdf:type schema:PropertyValue
54 Nb872d8dd0fc34b64b2a88f992696f52c schema:affiliation https://www.grid.ac/institutes/grid.267455.7
55 schema:familyName Su
56 schema:givenName Yue
57 rdf:type schema:Person
58 Nc1af9787f99144749f9690d96798594a schema:name Springer Nature - SN SciGraph project
59 rdf:type schema:Organization
60 Nd90234a1581c49f7b4296e4e42c2f614 schema:location Berlin, Heidelberg
61 schema:name Springer Berlin Heidelberg
62 rdf:type schema:Organisation
63 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
64 schema:name Information and Computing Sciences
65 rdf:type schema:DefinedTerm
66 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
67 schema:name Information Systems
68 rdf:type schema:DefinedTerm
69 sg:person.01200460536.41 schema:affiliation https://www.grid.ac/institutes/grid.267455.7
70 schema:familyName Ezeife
71 schema:givenName Christie I.
72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200460536.41
73 rdf:type schema:Person
74 sg:pub.10.1007/3-540-45153-6_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041583320
75 https://doi.org/10.1007/3-540-45153-6_3
76 rdf:type schema:CreativeWork
77 https://doi.org/10.1109/icde.1996.492094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094013387
78 rdf:type schema:CreativeWork
79 https://doi.org/10.1142/9789812819536_0020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096084080
80 rdf:type schema:CreativeWork
81 https://doi.org/10.1145/223784.223813 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006845698
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1145/342009.335372 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025244221
84 rdf:type schema:CreativeWork
85 https://www.grid.ac/institutes/grid.267455.7 schema:alternateName University of Windsor
86 schema:name School of Computer Science, University of Windsor, Canada
87 School of Computer Science, University of Windsor, N9B 3P4, Windsor, Ontario, Canada
88 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...