Efficient Rule Retrieval and Postponed Restrict Operations for Association Rule Mining View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2002-04-29

AUTHORS

Jochen Hipp , Christoph Mangold , Ulrich Güntzer , Gholamreza Nakhaeizadeh

ABSTRACT

Knowledge discovery in databases is a complex, iterative, and highly interactive process. When mining for association rules, typically interactivity is largely smothered by the execution times of the rule generation algorithms. Our approach is to accept a single, possibly expensive run, but all subsequent mining queries are supposed to be answered interactively by accessing a sophisticated rule cache. However there are two critical aspects. First, access to the cache must be efficient and comfortable. Therefore we enrich the basic association mining framework by descriptions of items through application dependent attributes. Furthermore we extend current mining query languages to deal with these attributes through ∃ and ∀ quantifiers. Second, the cache must be prepared to answer a broad variety of queries without rerunning the mining algorithm. A main contribution of this paper is that we show how to postpone restrict operations on the transactions from rule generation to rule retrieval from the cache. That is, without actually rerunning the algorithm, we efficiently construct those rules from the cache that would have been generated if the mining algorithm were run on only a subset of the transactions. In addition we describe how we implemented our ideas on a conventional relational database system. We evaluate our prototype concerning response times in a pilot application at DaimlerChrysler. It turns out to satisfy easily the demands of interactive data mining. More... »

PAGES

52-65

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/3-540-47887-6_6

DOI

http://dx.doi.org/10.1007/3-540-47887-6_6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1012951308


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Wilhelm Schickard-Institute, University of T\u00fcbingen, Germany", 
          "id": "http://www.grid.ac/institutes/grid.10392.39", 
          "name": [
            "Research & Technology, DaimlerChrysler AG, Ulm, Germany", 
            "Wilhelm Schickard-Institute, University of T\u00fcbingen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hipp", 
        "givenName": "Jochen", 
        "id": "sg:person.014732763563.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014732763563.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wilhelm Schickard-Institute, University of T\u00fcbingen, Germany", 
          "id": "http://www.grid.ac/institutes/grid.10392.39", 
          "name": [
            "IPVR, University of Stuttgart, Germany", 
            "Wilhelm Schickard-Institute, University of T\u00fcbingen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mangold", 
        "givenName": "Christoph", 
        "id": "sg:person.013460213631.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013460213631.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wilhelm Schickard-Institute, University of T\u00fcbingen, Germany", 
          "id": "http://www.grid.ac/institutes/grid.10392.39", 
          "name": [
            "Wilhelm Schickard-Institute, University of T\u00fcbingen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "G\u00fcntzer", 
        "givenName": "Ulrich", 
        "id": "sg:person.013324511711.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013324511711.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Research & Technology, DaimlerChrysler AG, Ulm, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5433.1", 
          "name": [
            "Research & Technology, DaimlerChrysler AG, Ulm, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nakhaeizadeh", 
        "givenName": "Gholamreza", 
        "id": "sg:person.07467643565.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07467643565.95"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2002-04-29", 
    "datePublishedReg": "2002-04-29", 
    "description": "Knowledge discovery in databases is a complex, iterative, and highly interactive process. When mining for association rules, typically interactivity is largely smothered by the execution times of the rule generation algorithms. Our approach is to accept a single, possibly expensive run, but all subsequent mining queries are supposed to be answered interactively by accessing a sophisticated rule cache. However there are two critical aspects. First, access to the cache must be efficient and comfortable. Therefore we enrich the basic association mining framework by descriptions of items through application dependent attributes. Furthermore we extend current mining query languages to deal with these attributes through \u2203 and \u2200 quantifiers. Second, the cache must be prepared to answer a broad variety of queries without rerunning the mining algorithm. A main contribution of this paper is that we show how to postpone restrict operations on the transactions from rule generation to rule retrieval from the cache. That is, without actually rerunning the algorithm, we efficiently construct those rules from the cache that would have been generated if the mining algorithm were run on only a subset of the transactions. In addition we describe how we implemented our ideas on a conventional relational database system. We evaluate our prototype concerning response times in a pilot application at DaimlerChrysler. It turns out to satisfy easily the demands of interactive data mining.", 
    "editor": [
      {
        "familyName": "Chen", 
        "givenName": "Ming-Syan", 
        "type": "Person"
      }, 
      {
        "familyName": "Yu", 
        "givenName": "Philip S.", 
        "type": "Person"
      }, 
      {
        "familyName": "Liu", 
        "givenName": "Bing", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/3-540-47887-6_6", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-43704-8", 
        "978-3-540-47887-4"
      ], 
      "name": "Advances in Knowledge Discovery and Data Mining", 
      "type": "Book"
    }, 
    "keywords": [
      "mining algorithms", 
      "restrict operations", 
      "conventional relational database systems", 
      "interactive data mining", 
      "relational database systems", 
      "rule generation algorithm", 
      "association rule mining", 
      "mining queries", 
      "query language", 
      "knowledge discovery", 
      "mining framework", 
      "database systems", 
      "rule mining", 
      "data mining", 
      "descriptions of items", 
      "rule generation", 
      "association rules", 
      "execution time", 
      "generation algorithm", 
      "dependent attributes", 
      "expensive runs", 
      "rule retrieval", 
      "cache", 
      "pilot application", 
      "algorithm", 
      "main contribution", 
      "mining", 
      "queries", 
      "retrieval", 
      "response time", 
      "interactive process", 
      "transactions", 
      "rules", 
      "critical aspects", 
      "attributes", 
      "interactivity", 
      "operation", 
      "prototype", 
      "language", 
      "DaimlerChrysler", 
      "framework", 
      "database", 
      "broad variety", 
      "access", 
      "applications", 
      "system", 
      "quantifiers", 
      "idea", 
      "demand", 
      "time", 
      "discovery", 
      "description", 
      "generation", 
      "items", 
      "subset", 
      "aspects", 
      "process", 
      "run", 
      "variety", 
      "contribution", 
      "addition", 
      "paper", 
      "approach", 
      "subsequent mining queries", 
      "sophisticated rule cache", 
      "rule cache", 
      "basic association mining framework", 
      "association mining framework", 
      "application dependent attributes", 
      "current mining query languages", 
      "mining query languages", 
      "Efficient Rule Retrieval", 
      "Postponed Restrict Operations"
    ], 
    "name": "Efficient Rule Retrieval and Postponed Restrict Operations for Association Rule Mining", 
    "pagination": "52-65", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1012951308"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/3-540-47887-6_6"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/3-540-47887-6_6", 
      "https://app.dimensions.ai/details/publication/pub.1012951308"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_367.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/3-540-47887-6_6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-540-47887-6_6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-540-47887-6_6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-540-47887-6_6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-540-47887-6_6'


 

This table displays all metadata directly associated to this object as RDF triples.

173 TRIPLES      23 PREDICATES      99 URIs      91 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/3-540-47887-6_6 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 anzsrc-for:0806
4 schema:author N2f29df8e92e4433fa359ade110adfc17
5 schema:datePublished 2002-04-29
6 schema:datePublishedReg 2002-04-29
7 schema:description Knowledge discovery in databases is a complex, iterative, and highly interactive process. When mining for association rules, typically interactivity is largely smothered by the execution times of the rule generation algorithms. Our approach is to accept a single, possibly expensive run, but all subsequent mining queries are supposed to be answered interactively by accessing a sophisticated rule cache. However there are two critical aspects. First, access to the cache must be efficient and comfortable. Therefore we enrich the basic association mining framework by descriptions of items through application dependent attributes. Furthermore we extend current mining query languages to deal with these attributes through ∃ and ∀ quantifiers. Second, the cache must be prepared to answer a broad variety of queries without rerunning the mining algorithm. A main contribution of this paper is that we show how to postpone restrict operations on the transactions from rule generation to rule retrieval from the cache. That is, without actually rerunning the algorithm, we efficiently construct those rules from the cache that would have been generated if the mining algorithm were run on only a subset of the transactions. In addition we describe how we implemented our ideas on a conventional relational database system. We evaluate our prototype concerning response times in a pilot application at DaimlerChrysler. It turns out to satisfy easily the demands of interactive data mining.
8 schema:editor N33883545effa4bce8a25a7a1f55335cd
9 schema:genre chapter
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N9582d25bfaf64a7282bc0f5e1fb05fd2
13 schema:keywords DaimlerChrysler
14 Efficient Rule Retrieval
15 Postponed Restrict Operations
16 access
17 addition
18 algorithm
19 application dependent attributes
20 applications
21 approach
22 aspects
23 association mining framework
24 association rule mining
25 association rules
26 attributes
27 basic association mining framework
28 broad variety
29 cache
30 contribution
31 conventional relational database systems
32 critical aspects
33 current mining query languages
34 data mining
35 database
36 database systems
37 demand
38 dependent attributes
39 description
40 descriptions of items
41 discovery
42 execution time
43 expensive runs
44 framework
45 generation
46 generation algorithm
47 idea
48 interactive data mining
49 interactive process
50 interactivity
51 items
52 knowledge discovery
53 language
54 main contribution
55 mining
56 mining algorithms
57 mining framework
58 mining queries
59 mining query languages
60 operation
61 paper
62 pilot application
63 process
64 prototype
65 quantifiers
66 queries
67 query language
68 relational database systems
69 response time
70 restrict operations
71 retrieval
72 rule cache
73 rule generation
74 rule generation algorithm
75 rule mining
76 rule retrieval
77 rules
78 run
79 sophisticated rule cache
80 subsequent mining queries
81 subset
82 system
83 time
84 transactions
85 variety
86 schema:name Efficient Rule Retrieval and Postponed Restrict Operations for Association Rule Mining
87 schema:pagination 52-65
88 schema:productId Na0cf261a0fde40e4a0e438dad5082316
89 Nc2a42286375e4af28b4a16a66349e11e
90 schema:publisher N06e09a507b794b44a90cb9dcb544645a
91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012951308
92 https://doi.org/10.1007/3-540-47887-6_6
93 schema:sdDatePublished 2022-01-01T19:21
94 schema:sdLicense https://scigraph.springernature.com/explorer/license/
95 schema:sdPublisher Ne12e4b8b0ac5495ca009743b834e8a0b
96 schema:url https://doi.org/10.1007/3-540-47887-6_6
97 sgo:license sg:explorer/license/
98 sgo:sdDataset chapters
99 rdf:type schema:Chapter
100 N06e09a507b794b44a90cb9dcb544645a schema:name Springer Nature
101 rdf:type schema:Organisation
102 N2ba2bc06ec4349fe8015ae51388a2f1d schema:familyName Chen
103 schema:givenName Ming-Syan
104 rdf:type schema:Person
105 N2f29df8e92e4433fa359ade110adfc17 rdf:first sg:person.014732763563.11
106 rdf:rest Nf0714fc983d9419889578f72c20060fc
107 N33883545effa4bce8a25a7a1f55335cd rdf:first N2ba2bc06ec4349fe8015ae51388a2f1d
108 rdf:rest N70576e088e854b5993e6e467f1803c8e
109 N41f32b98078743f9a24eeee951de362e rdf:first sg:person.07467643565.95
110 rdf:rest rdf:nil
111 N4d9da401b3b74540bae313b3f840921f schema:familyName Liu
112 schema:givenName Bing
113 rdf:type schema:Person
114 N70576e088e854b5993e6e467f1803c8e rdf:first Ne7282435857a4bc397c43cd697a0a7cd
115 rdf:rest Ndeabaa8d5a184943b76c945636b54a21
116 N7f725d7c663a4ab0bf30c9fddf524f02 rdf:first sg:person.013324511711.75
117 rdf:rest N41f32b98078743f9a24eeee951de362e
118 N9582d25bfaf64a7282bc0f5e1fb05fd2 schema:isbn 978-3-540-43704-8
119 978-3-540-47887-4
120 schema:name Advances in Knowledge Discovery and Data Mining
121 rdf:type schema:Book
122 Na0cf261a0fde40e4a0e438dad5082316 schema:name dimensions_id
123 schema:value pub.1012951308
124 rdf:type schema:PropertyValue
125 Nc2a42286375e4af28b4a16a66349e11e schema:name doi
126 schema:value 10.1007/3-540-47887-6_6
127 rdf:type schema:PropertyValue
128 Ndeabaa8d5a184943b76c945636b54a21 rdf:first N4d9da401b3b74540bae313b3f840921f
129 rdf:rest rdf:nil
130 Ne12e4b8b0ac5495ca009743b834e8a0b schema:name Springer Nature - SN SciGraph project
131 rdf:type schema:Organization
132 Ne7282435857a4bc397c43cd697a0a7cd schema:familyName Yu
133 schema:givenName Philip S.
134 rdf:type schema:Person
135 Nf0714fc983d9419889578f72c20060fc rdf:first sg:person.013460213631.59
136 rdf:rest N7f725d7c663a4ab0bf30c9fddf524f02
137 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
138 schema:name Information and Computing Sciences
139 rdf:type schema:DefinedTerm
140 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
141 schema:name Artificial Intelligence and Image Processing
142 rdf:type schema:DefinedTerm
143 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
144 schema:name Information Systems
145 rdf:type schema:DefinedTerm
146 sg:person.013324511711.75 schema:affiliation grid-institutes:grid.10392.39
147 schema:familyName Güntzer
148 schema:givenName Ulrich
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013324511711.75
150 rdf:type schema:Person
151 sg:person.013460213631.59 schema:affiliation grid-institutes:grid.10392.39
152 schema:familyName Mangold
153 schema:givenName Christoph
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013460213631.59
155 rdf:type schema:Person
156 sg:person.014732763563.11 schema:affiliation grid-institutes:grid.10392.39
157 schema:familyName Hipp
158 schema:givenName Jochen
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014732763563.11
160 rdf:type schema:Person
161 sg:person.07467643565.95 schema:affiliation grid-institutes:grid.5433.1
162 schema:familyName Nakhaeizadeh
163 schema:givenName Gholamreza
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07467643565.95
165 rdf:type schema:Person
166 grid-institutes:grid.10392.39 schema:alternateName Wilhelm Schickard-Institute, University of Tübingen, Germany
167 schema:name IPVR, University of Stuttgart, Germany
168 Research & Technology, DaimlerChrysler AG, Ulm, Germany
169 Wilhelm Schickard-Institute, University of Tübingen, Germany
170 rdf:type schema:Organization
171 grid-institutes:grid.5433.1 schema:alternateName Research & Technology, DaimlerChrysler AG, Ulm, Germany
172 schema:name Research & Technology, DaimlerChrysler AG, Ulm, Germany
173 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...