Designing Good Semi-structured Databases View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1999

AUTHORS

Sin Yeung Lee , Mong Li Lee , Tok Wang Ling , Leonid A. Kalinichenko

ABSTRACT

Semi-structured data has become prevalent with the growth of the Internet and other on-line information repositories. Many organizational databases are presented on the web as semi-structured data. Designing a “good” semi-structured database is increasingly crucial to prevent data redundancy, inconsistency and updating anomalies. In this paper, we define a semi-structured schema graph and identify the various anomalies that may occur in the graph. A normal form for semi-structured schema graph, S3-NF, is proposed. We present two approaches to design S3-NF database, namely, restructuring by decomposition and the ER approach. The first approach consists of a set of rules to decompose a semi-structured schema graph into S3-NF. The second approach uses the ER model to remove anomalies at the semantic level. More... »

PAGES

131-145

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/3-540-47866-3_9

DOI

http://dx.doi.org/10.1007/3-540-47866-3_9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1053451283


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Computing, National University of Singapore, Singapore", 
          "id": "http://www.grid.ac/institutes/grid.4280.e", 
          "name": [
            "School of Computing, National University of Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Sin Yeung", 
        "id": "sg:person.011321056025.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011321056025.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Computing, National University of Singapore, Singapore", 
          "id": "http://www.grid.ac/institutes/grid.4280.e", 
          "name": [
            "School of Computing, National University of Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Mong Li", 
        "id": "sg:person.013615355241.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013615355241.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Computing, National University of Singapore, Singapore", 
          "id": "http://www.grid.ac/institutes/grid.4280.e", 
          "name": [
            "School of Computing, National University of Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ling", 
        "givenName": "Tok Wang", 
        "id": "sg:person.015350356755.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015350356755.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences, Institute for Problems of Informatics, Russia", 
          "id": "http://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Russian Academy of Sciences, Institute for Problems of Informatics, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kalinichenko", 
        "givenName": "Leonid A.", 
        "id": "sg:person.016144507043.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016144507043.63"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1999", 
    "datePublishedReg": "1999-01-01", 
    "description": "Semi-structured data has become prevalent with the growth of the Internet and other on-line information repositories. Many organizational databases are presented on the web as semi-structured data. Designing a \u201cgood\u201d semi-structured database is increasingly crucial to prevent data redundancy, inconsistency and updating anomalies. In this paper, we define a semi-structured schema graph and identify the various anomalies that may occur in the graph. A normal form for semi-structured schema graph, S3-NF, is proposed. We present two approaches to design S3-NF database, namely, restructuring by decomposition and the ER approach. The first approach consists of a set of rules to decompose a semi-structured schema graph into S3-NF. The second approach uses the ER model to remove anomalies at the semantic level.", 
    "editor": [
      {
        "familyName": "Akoka", 
        "givenName": "Jacky", 
        "type": "Person"
      }, 
      {
        "familyName": "Bouzeghoub", 
        "givenName": "Mokrane", 
        "type": "Person"
      }, 
      {
        "familyName": "Comyn-Wattiau", 
        "givenName": "Isabelle", 
        "type": "Person"
      }, 
      {
        "familyName": "M\u00e9tais", 
        "givenName": "Elisabeth", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/3-540-47866-3_9", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-66686-8", 
        "978-3-540-47866-9"
      ], 
      "name": "Conceptual Modeling \u2014 ER \u201999", 
      "type": "Book"
    }, 
    "keywords": [
      "semi-structured data", 
      "semi-structured databases", 
      "schema graph", 
      "set of rules", 
      "information repository", 
      "organizational databases", 
      "data redundancy", 
      "semantic level", 
      "ER model", 
      "ER approach", 
      "graph", 
      "first approach", 
      "database", 
      "second approach", 
      "Internet", 
      "repository", 
      "Web", 
      "redundancy", 
      "normal form", 
      "set", 
      "rules", 
      "data", 
      "inconsistencies", 
      "model", 
      "decomposition", 
      "anomalies", 
      "form", 
      "levels", 
      "growth", 
      "approach", 
      "paper"
    ], 
    "name": "Designing Good Semi-structured Databases", 
    "pagination": "131-145", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1053451283"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/3-540-47866-3_9"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/3-540-47866-3_9", 
      "https://app.dimensions.ai/details/publication/pub.1053451283"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-10T10:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/chapter/chapter_110.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/3-540-47866-3_9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-540-47866-3_9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-540-47866-3_9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-540-47866-3_9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-540-47866-3_9'


 

This table displays all metadata directly associated to this object as RDF triples.

130 TRIPLES      23 PREDICATES      57 URIs      50 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/3-540-47866-3_9 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author N5063cd04ad624a688119d70b247172b3
4 schema:datePublished 1999
5 schema:datePublishedReg 1999-01-01
6 schema:description Semi-structured data has become prevalent with the growth of the Internet and other on-line information repositories. Many organizational databases are presented on the web as semi-structured data. Designing a “good” semi-structured database is increasingly crucial to prevent data redundancy, inconsistency and updating anomalies. In this paper, we define a semi-structured schema graph and identify the various anomalies that may occur in the graph. A normal form for semi-structured schema graph, S3-NF, is proposed. We present two approaches to design S3-NF database, namely, restructuring by decomposition and the ER approach. The first approach consists of a set of rules to decompose a semi-structured schema graph into S3-NF. The second approach uses the ER model to remove anomalies at the semantic level.
7 schema:editor N4d31c600a6c741ee8e337d936d680583
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N60cdc43dafd042c6a84dc4127a61b70e
12 schema:keywords ER approach
13 ER model
14 Internet
15 Web
16 anomalies
17 approach
18 data
19 data redundancy
20 database
21 decomposition
22 first approach
23 form
24 graph
25 growth
26 inconsistencies
27 information repository
28 levels
29 model
30 normal form
31 organizational databases
32 paper
33 redundancy
34 repository
35 rules
36 schema graph
37 second approach
38 semantic level
39 semi-structured data
40 semi-structured databases
41 set
42 set of rules
43 schema:name Designing Good Semi-structured Databases
44 schema:pagination 131-145
45 schema:productId Na363bb27adc945fbbb09544b7235aa83
46 Ncb79cd9e877e472f915a7fa6e76fef3e
47 schema:publisher N8bb3bb25661e4ca8adebaf29475bd4ed
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053451283
49 https://doi.org/10.1007/3-540-47866-3_9
50 schema:sdDatePublished 2022-05-10T10:36
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher N9452c07842d34d41986591d5867cab0e
53 schema:url https://doi.org/10.1007/3-540-47866-3_9
54 sgo:license sg:explorer/license/
55 sgo:sdDataset chapters
56 rdf:type schema:Chapter
57 N188ac3060c3442109726c12fbd1b6cbe schema:familyName Métais
58 schema:givenName Elisabeth
59 rdf:type schema:Person
60 N1c64eaa86ad04a9ca8671e9c5681a615 rdf:first N7e77e4c1b3fe4bc5850b7f9871971988
61 rdf:rest N32502be888b14241bf93b22a3b47e658
62 N32502be888b14241bf93b22a3b47e658 rdf:first N6d7be5de156c4a2ca3ee0367bc7c15b3
63 rdf:rest N594a0bca288444318a25661a5838ea9d
64 N457c3f09023e4cf996364fc0a3031548 rdf:first sg:person.016144507043.63
65 rdf:rest rdf:nil
66 N4d31c600a6c741ee8e337d936d680583 rdf:first N6f17ca909d374cd1bc60b5e6db7481fd
67 rdf:rest N1c64eaa86ad04a9ca8671e9c5681a615
68 N5063cd04ad624a688119d70b247172b3 rdf:first sg:person.011321056025.61
69 rdf:rest N88a30c5c70774fa891c8f70358d544ec
70 N594a0bca288444318a25661a5838ea9d rdf:first N188ac3060c3442109726c12fbd1b6cbe
71 rdf:rest rdf:nil
72 N60cdc43dafd042c6a84dc4127a61b70e schema:isbn 978-3-540-47866-9
73 978-3-540-66686-8
74 schema:name Conceptual Modeling — ER ’99
75 rdf:type schema:Book
76 N6d7be5de156c4a2ca3ee0367bc7c15b3 schema:familyName Comyn-Wattiau
77 schema:givenName Isabelle
78 rdf:type schema:Person
79 N6f17ca909d374cd1bc60b5e6db7481fd schema:familyName Akoka
80 schema:givenName Jacky
81 rdf:type schema:Person
82 N7e77e4c1b3fe4bc5850b7f9871971988 schema:familyName Bouzeghoub
83 schema:givenName Mokrane
84 rdf:type schema:Person
85 N88a30c5c70774fa891c8f70358d544ec rdf:first sg:person.013615355241.39
86 rdf:rest Ncca12ab8732d4dc39a8a52f2f312fb6d
87 N8bb3bb25661e4ca8adebaf29475bd4ed schema:name Springer Nature
88 rdf:type schema:Organisation
89 N9452c07842d34d41986591d5867cab0e schema:name Springer Nature - SN SciGraph project
90 rdf:type schema:Organization
91 Na363bb27adc945fbbb09544b7235aa83 schema:name doi
92 schema:value 10.1007/3-540-47866-3_9
93 rdf:type schema:PropertyValue
94 Ncb79cd9e877e472f915a7fa6e76fef3e schema:name dimensions_id
95 schema:value pub.1053451283
96 rdf:type schema:PropertyValue
97 Ncca12ab8732d4dc39a8a52f2f312fb6d rdf:first sg:person.015350356755.50
98 rdf:rest N457c3f09023e4cf996364fc0a3031548
99 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
100 schema:name Information and Computing Sciences
101 rdf:type schema:DefinedTerm
102 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
103 schema:name Information Systems
104 rdf:type schema:DefinedTerm
105 sg:person.011321056025.61 schema:affiliation grid-institutes:grid.4280.e
106 schema:familyName Lee
107 schema:givenName Sin Yeung
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011321056025.61
109 rdf:type schema:Person
110 sg:person.013615355241.39 schema:affiliation grid-institutes:grid.4280.e
111 schema:familyName Lee
112 schema:givenName Mong Li
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013615355241.39
114 rdf:type schema:Person
115 sg:person.015350356755.50 schema:affiliation grid-institutes:grid.4280.e
116 schema:familyName Ling
117 schema:givenName Tok Wang
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015350356755.50
119 rdf:type schema:Person
120 sg:person.016144507043.63 schema:affiliation grid-institutes:grid.4886.2
121 schema:familyName Kalinichenko
122 schema:givenName Leonid A.
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016144507043.63
124 rdf:type schema:Person
125 grid-institutes:grid.4280.e schema:alternateName School of Computing, National University of Singapore, Singapore
126 schema:name School of Computing, National University of Singapore, Singapore
127 rdf:type schema:Organization
128 grid-institutes:grid.4886.2 schema:alternateName Russian Academy of Sciences, Institute for Problems of Informatics, Russia
129 schema:name Russian Academy of Sciences, Institute for Problems of Informatics, Russia
130 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...