Massively parallel elliptic curve factoring View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2001-05-18

AUTHORS

B. Dixon , A. K. Lenstra

ABSTRACT

We describe our massively parallel implementations of the elliptic curve factoring method. One of our implementations is based on a new systolic version of Montgomery multiplication.

PAGES

183-193

Book

TITLE

Advances in Cryptology — EUROCRYPT’ 92

ISBN

978-3-540-56413-3

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/3-540-47555-9_16

DOI

http://dx.doi.org/10.1007/3-540-47555-9_16

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1005687189


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "alternateName": "Princeton University", 
          "id": "https://www.grid.ac/institutes/grid.16750.35", 
          "name": [
            "Department of Computer Science, Princeton University, 08544, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dixon", 
        "givenName": "B.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Bellcore, rm 2Q334, 445 South Street, 07960, Morristown, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lenstra", 
        "givenName": "A. K.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/b978-0-444-88071-0.50017-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002199576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aoap/1177005878", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064398118"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1971363", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069676640"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/conm/022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098741441"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2001-05-18", 
    "datePublishedReg": "2001-05-18", 
    "description": "We describe our massively parallel implementations of the elliptic curve factoring method. One of our implementations is based on a new systolic version of Montgomery multiplication.", 
    "editor": [
      {
        "familyName": "Rueppel", 
        "givenName": "Rainer A.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/3-540-47555-9_16", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-540-56413-3"
      ], 
      "name": "Advances in Cryptology \u2014 EUROCRYPT\u2019 92", 
      "type": "Book"
    }, 
    "name": "Massively parallel elliptic curve factoring", 
    "pagination": "183-193", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/3-540-47555-9_16"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1b1893b102073f30a4d23a428f738f16b83d926d488544a67037562fcb379736"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1005687189"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/3-540-47555-9_16", 
      "https://app.dimensions.ai/details/publication/pub.1005687189"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T05:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000339_0000000339/records_109508_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F3-540-47555-9_16"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-540-47555-9_16'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-540-47555-9_16'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-540-47555-9_16'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-540-47555-9_16'


 

This table displays all metadata directly associated to this object as RDF triples.

75 TRIPLES      22 PREDICATES      28 URIs      19 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/3-540-47555-9_16 schema:author N9e9bf31f3c604086ace5eee76a3f6c25
2 schema:citation https://doi.org/10.1016/b978-0-444-88071-0.50017-5
3 https://doi.org/10.1090/conm/022
4 https://doi.org/10.1214/aoap/1177005878
5 https://doi.org/10.2307/1971363
6 schema:datePublished 2001-05-18
7 schema:datePublishedReg 2001-05-18
8 schema:description We describe our massively parallel implementations of the elliptic curve factoring method. One of our implementations is based on a new systolic version of Montgomery multiplication.
9 schema:editor Nd5dee37fbee4456cabd667f3054291ce
10 schema:genre chapter
11 schema:inLanguage en
12 schema:isAccessibleForFree true
13 schema:isPartOf Nc75b308a9a07496f94f38704fcd67f32
14 schema:name Massively parallel elliptic curve factoring
15 schema:pagination 183-193
16 schema:productId N5151729c1a3140fcaf4cd8cfaa63d8a5
17 N984da95e0c234e91987bc13202ba17c6
18 N9f226f9697894fab87f6b69e31dd5522
19 schema:publisher Ne17ca5cc553642e9bba33460a6046e0e
20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005687189
21 https://doi.org/10.1007/3-540-47555-9_16
22 schema:sdDatePublished 2019-04-16T05:21
23 schema:sdLicense https://scigraph.springernature.com/explorer/license/
24 schema:sdPublisher Nccdbaf1aa0094524a3faa9c04fd1f2ff
25 schema:url https://link.springer.com/10.1007%2F3-540-47555-9_16
26 sgo:license sg:explorer/license/
27 sgo:sdDataset chapters
28 rdf:type schema:Chapter
29 N5151729c1a3140fcaf4cd8cfaa63d8a5 schema:name dimensions_id
30 schema:value pub.1005687189
31 rdf:type schema:PropertyValue
32 N778b8354eced4460bcbdf71e7dc06777 schema:affiliation https://www.grid.ac/institutes/grid.16750.35
33 schema:familyName Dixon
34 schema:givenName B.
35 rdf:type schema:Person
36 N864204298a894b14ab19122f820460af schema:familyName Rueppel
37 schema:givenName Rainer A.
38 rdf:type schema:Person
39 N984da95e0c234e91987bc13202ba17c6 schema:name doi
40 schema:value 10.1007/3-540-47555-9_16
41 rdf:type schema:PropertyValue
42 N9e9bf31f3c604086ace5eee76a3f6c25 rdf:first N778b8354eced4460bcbdf71e7dc06777
43 rdf:rest Nd5121e4fc91f4efaa55a7b2856c66fca
44 N9f226f9697894fab87f6b69e31dd5522 schema:name readcube_id
45 schema:value 1b1893b102073f30a4d23a428f738f16b83d926d488544a67037562fcb379736
46 rdf:type schema:PropertyValue
47 Nc75b308a9a07496f94f38704fcd67f32 schema:isbn 978-3-540-56413-3
48 schema:name Advances in Cryptology — EUROCRYPT’ 92
49 rdf:type schema:Book
50 Nc81fc905b16a49a0a0283f99da76b575 schema:affiliation Nfa29010f9ae84cfc9575328ef2a0cfa7
51 schema:familyName Lenstra
52 schema:givenName A. K.
53 rdf:type schema:Person
54 Nccdbaf1aa0094524a3faa9c04fd1f2ff schema:name Springer Nature - SN SciGraph project
55 rdf:type schema:Organization
56 Nd5121e4fc91f4efaa55a7b2856c66fca rdf:first Nc81fc905b16a49a0a0283f99da76b575
57 rdf:rest rdf:nil
58 Nd5dee37fbee4456cabd667f3054291ce rdf:first N864204298a894b14ab19122f820460af
59 rdf:rest rdf:nil
60 Ne17ca5cc553642e9bba33460a6046e0e schema:location Berlin, Heidelberg
61 schema:name Springer Berlin Heidelberg
62 rdf:type schema:Organisation
63 Nfa29010f9ae84cfc9575328ef2a0cfa7 schema:name Bellcore, rm 2Q334, 445 South Street, 07960, Morristown, NJ, USA
64 rdf:type schema:Organization
65 https://doi.org/10.1016/b978-0-444-88071-0.50017-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002199576
66 rdf:type schema:CreativeWork
67 https://doi.org/10.1090/conm/022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098741441
68 rdf:type schema:CreativeWork
69 https://doi.org/10.1214/aoap/1177005878 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064398118
70 rdf:type schema:CreativeWork
71 https://doi.org/10.2307/1971363 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069676640
72 rdf:type schema:CreativeWork
73 https://www.grid.ac/institutes/grid.16750.35 schema:alternateName Princeton University
74 schema:name Department of Computer Science, Princeton University, 08544, Princeton, NJ, USA
75 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...