Grouping in the Normalized Cut Framework View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1999-10-22

AUTHORS

Jitendra Malik , Jianbo Shi , Serge Belongie , Thomas Leung

ABSTRACT

In this paper, we study low-level image segmentation in the normalized cut framework proposed by Shi and Malik (1997). The goal is to partition the image from a big picture point of view. Perceptually significant groups are detected first while small variations and details are treated later. Different image features — intensity, color, texture, con- tour continuity, motion and stereo disparity are treated in one uniform framework. We suggest directions for intermediate-level grouping on the output of this low-level segmentation. More... »

PAGES

155-164

Book

TITLE

Shape, Contour and Grouping in Computer Vision

ISBN

978-3-540-66722-3
978-3-540-46805-9

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/3-540-46805-6_9

DOI

http://dx.doi.org/10.1007/3-540-46805-6_9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1045708116


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Computer Science Division, University of California at Berkeley, 94720, Berkeley, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.47840.3f", 
          "name": [
            "Computer Science Division, University of California at Berkeley, 94720, Berkeley, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Malik", 
        "givenName": "Jitendra", 
        "id": "sg:person.01364521761.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364521761.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Computer Science Division, University of California at Berkeley, 94720, Berkeley, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.47840.3f", 
          "name": [
            "Computer Science Division, University of California at Berkeley, 94720, Berkeley, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shi", 
        "givenName": "Jianbo", 
        "id": "sg:person.016214030753.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016214030753.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Computer Science Division, University of California at Berkeley, 94720, Berkeley, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.47840.3f", 
          "name": [
            "Computer Science Division, University of California at Berkeley, 94720, Berkeley, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Belongie", 
        "givenName": "Serge", 
        "id": "sg:person.0632735744.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0632735744.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Computer Science Division, University of California at Berkeley, 94720, Berkeley, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.47840.3f", 
          "name": [
            "Computer Science Division, University of California at Berkeley, 94720, Berkeley, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Leung", 
        "givenName": "Thomas", 
        "id": "sg:person.016034550437.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016034550437.98"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1999-10-22", 
    "datePublishedReg": "1999-10-22", 
    "description": "In this paper, we study low-level image segmentation in the normalized cut framework proposed by Shi and Malik (1997). The goal is to partition the image from a big picture point of view. Perceptually significant groups are detected first while small variations and details are treated later. Different image features \u2014 intensity, color, texture, con- tour continuity, motion and stereo disparity are treated in one uniform framework. We suggest directions for intermediate-level grouping on the output of this low-level segmentation.", 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/3-540-46805-6_9", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-66722-3", 
        "978-3-540-46805-9"
      ], 
      "name": "Shape, Contour and Grouping in Computer Vision", 
      "type": "Book"
    }, 
    "keywords": [
      "low-level image segmentation", 
      "cut framework", 
      "low-level segmentation", 
      "normalized cuts framework", 
      "image segmentation", 
      "stereo disparity", 
      "different images", 
      "uniform framework", 
      "segmentation", 
      "framework", 
      "images", 
      "picture points", 
      "goal", 
      "output", 
      "texture", 
      "grouping", 
      "view", 
      "detail", 
      "point", 
      "color", 
      "motion", 
      "direction", 
      "Malik", 
      "continuity", 
      "small variations", 
      "Shi", 
      "variation", 
      "disparities", 
      "significant group", 
      "group", 
      "paper"
    ], 
    "name": "Grouping in the Normalized Cut Framework", 
    "pagination": "155-164", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1045708116"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/3-540-46805-6_9"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/3-540-46805-6_9", 
      "https://app.dimensions.ai/details/publication/pub.1045708116"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-12-01T06:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/chapter/chapter_378.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/3-540-46805-6_9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-540-46805-6_9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-540-46805-6_9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-540-46805-6_9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-540-46805-6_9'


 

This table displays all metadata directly associated to this object as RDF triples.

105 TRIPLES      21 PREDICATES      54 URIs      47 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/3-540-46805-6_9 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nd203b213082a484789405bb1c3356377
4 schema:datePublished 1999-10-22
5 schema:datePublishedReg 1999-10-22
6 schema:description In this paper, we study low-level image segmentation in the normalized cut framework proposed by Shi and Malik (1997). The goal is to partition the image from a big picture point of view. Perceptually significant groups are detected first while small variations and details are treated later. Different image features — intensity, color, texture, con- tour continuity, motion and stereo disparity are treated in one uniform framework. We suggest directions for intermediate-level grouping on the output of this low-level segmentation.
7 schema:genre chapter
8 schema:isAccessibleForFree false
9 schema:isPartOf N5db9f886bec14e3798176337020d35de
10 schema:keywords Malik
11 Shi
12 color
13 continuity
14 cut framework
15 detail
16 different images
17 direction
18 disparities
19 framework
20 goal
21 group
22 grouping
23 image segmentation
24 images
25 low-level image segmentation
26 low-level segmentation
27 motion
28 normalized cuts framework
29 output
30 paper
31 picture points
32 point
33 segmentation
34 significant group
35 small variations
36 stereo disparity
37 texture
38 uniform framework
39 variation
40 view
41 schema:name Grouping in the Normalized Cut Framework
42 schema:pagination 155-164
43 schema:productId N817e4279de074b139d78eb8d4b9f885e
44 Nf99495e369194c918d040c48c9ad0971
45 schema:publisher N1a95df7c8cb14986adc10bbc95dce1ad
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045708116
47 https://doi.org/10.1007/3-540-46805-6_9
48 schema:sdDatePublished 2022-12-01T06:52
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher Nb7554c412b314a51a283ef5647cf9d2e
51 schema:url https://doi.org/10.1007/3-540-46805-6_9
52 sgo:license sg:explorer/license/
53 sgo:sdDataset chapters
54 rdf:type schema:Chapter
55 N04f7ccc9cd5a42f597cdebf69a041012 rdf:first sg:person.016214030753.30
56 rdf:rest N688d4255805941c8bb79b129babd0a14
57 N0ce7575317a84aa9bcfa5915b33b1ade rdf:first sg:person.016034550437.98
58 rdf:rest rdf:nil
59 N1a95df7c8cb14986adc10bbc95dce1ad schema:name Springer Nature
60 rdf:type schema:Organisation
61 N5db9f886bec14e3798176337020d35de schema:isbn 978-3-540-46805-9
62 978-3-540-66722-3
63 schema:name Shape, Contour and Grouping in Computer Vision
64 rdf:type schema:Book
65 N688d4255805941c8bb79b129babd0a14 rdf:first sg:person.0632735744.68
66 rdf:rest N0ce7575317a84aa9bcfa5915b33b1ade
67 N817e4279de074b139d78eb8d4b9f885e schema:name dimensions_id
68 schema:value pub.1045708116
69 rdf:type schema:PropertyValue
70 Nb7554c412b314a51a283ef5647cf9d2e schema:name Springer Nature - SN SciGraph project
71 rdf:type schema:Organization
72 Nd203b213082a484789405bb1c3356377 rdf:first sg:person.01364521761.84
73 rdf:rest N04f7ccc9cd5a42f597cdebf69a041012
74 Nf99495e369194c918d040c48c9ad0971 schema:name doi
75 schema:value 10.1007/3-540-46805-6_9
76 rdf:type schema:PropertyValue
77 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
78 schema:name Information and Computing Sciences
79 rdf:type schema:DefinedTerm
80 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
81 schema:name Artificial Intelligence and Image Processing
82 rdf:type schema:DefinedTerm
83 sg:person.01364521761.84 schema:affiliation grid-institutes:grid.47840.3f
84 schema:familyName Malik
85 schema:givenName Jitendra
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364521761.84
87 rdf:type schema:Person
88 sg:person.016034550437.98 schema:affiliation grid-institutes:grid.47840.3f
89 schema:familyName Leung
90 schema:givenName Thomas
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016034550437.98
92 rdf:type schema:Person
93 sg:person.016214030753.30 schema:affiliation grid-institutes:grid.47840.3f
94 schema:familyName Shi
95 schema:givenName Jianbo
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016214030753.30
97 rdf:type schema:Person
98 sg:person.0632735744.68 schema:affiliation grid-institutes:grid.47840.3f
99 schema:familyName Belongie
100 schema:givenName Serge
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0632735744.68
102 rdf:type schema:Person
103 grid-institutes:grid.47840.3f schema:alternateName Computer Science Division, University of California at Berkeley, 94720, Berkeley, CA, USA
104 schema:name Computer Science Division, University of California at Berkeley, 94720, Berkeley, CA, USA
105 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...