A Mixed Ensemble Approach for the Semi-supervised Problem View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2002

AUTHORS

Evgenia Dimitriadou , Andreas Weingessel , Kurt Hornik

ABSTRACT

In this paper we introduce a mixed approach for the semi-supervised data problem. Our approach consists of an ensemble unsupervised learning part where the labeled and unlabeled points are segmented into clusters. Continuing, we take advantage of the a priori information of the labeled points to assign classes to clusters and proceed to predicting with the ensemble method new incoming ones. Thus, we can finally conclude classifying new data points according to the segmentation of the whole set and the association of its clusters to the classes. More... »

PAGES

571-576

Book

TITLE

Artificial Neural Networks — ICANN 2002

ISBN

978-3-540-44074-1
978-3-540-46084-8

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/3-540-46084-5_93

DOI

http://dx.doi.org/10.1007/3-540-46084-5_93

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009723087


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "TU Wien", 
          "id": "https://www.grid.ac/institutes/grid.5329.d", 
          "name": [
            "Institut f\u00fcr Statistik und Wahrscheinlichkeitstheorie, Technische Universit\u00e4t Wien, Wiedner Hauptstra\u00dfe 8-10/1071, A-1040\u00a0Wien, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dimitriadou", 
        "givenName": "Evgenia", 
        "id": "sg:person.011602321425.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011602321425.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "TU Wien", 
          "id": "https://www.grid.ac/institutes/grid.5329.d", 
          "name": [
            "Institut f\u00fcr Statistik und Wahrscheinlichkeitstheorie, Technische Universit\u00e4t Wien, Wiedner Hauptstra\u00dfe 8-10/1071, A-1040\u00a0Wien, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Weingessel", 
        "givenName": "Andreas", 
        "id": "sg:person.01203647327.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01203647327.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "TU Wien", 
          "id": "https://www.grid.ac/institutes/grid.5329.d", 
          "name": [
            "Institut f\u00fcr Statistik und Wahrscheinlichkeitstheorie, Technische Universit\u00e4t Wien, Wiedner Hauptstra\u00dfe 8-10/1071, A-1040\u00a0Wien, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hornik", 
        "givenName": "Kurt", 
        "id": "sg:person.01355621653.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355621653.94"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1023/a:1007618119488", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003090683", 
          "https://doi.org/10.1023/a:1007618119488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-44668-0_7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037922808", 
          "https://doi.org/10.1007/3-540-44668-0_7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1009715923555", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042048349", 
          "https://doi.org/10.1023/a:1009715923555"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/355161a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051732355", 
          "https://doi.org/10.1038/355161a0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2002", 
    "datePublishedReg": "2002-01-01", 
    "description": "In this paper we introduce a mixed approach for the semi-supervised data problem. Our approach consists of an ensemble unsupervised learning part where the labeled and unlabeled points are segmented into clusters. Continuing, we take advantage of the a priori information of the labeled points to assign classes to clusters and proceed to predicting with the ensemble method new incoming ones. Thus, we can finally conclude classifying new data points according to the segmentation of the whole set and the association of its clusters to the classes.", 
    "editor": [
      {
        "familyName": "Dorronsoro", 
        "givenName": "Jos\u00e9 R.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/3-540-46084-5_93", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-540-44074-1", 
        "978-3-540-46084-8"
      ], 
      "name": "Artificial Neural Networks \u2014 ICANN 2002", 
      "type": "Book"
    }, 
    "name": "A Mixed Ensemble Approach for the Semi-supervised Problem", 
    "pagination": "571-576", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/3-540-46084-5_93"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2e51c6fd9857f875d851596e83ec1027d16cce8b3261c17d0328bc22ab7a38fc"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009723087"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/3-540-46084-5_93", 
      "https://app.dimensions.ai/details/publication/pub.1009723087"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T21:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000558.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/3-540-46084-5_93"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-540-46084-5_93'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-540-46084-5_93'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-540-46084-5_93'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-540-46084-5_93'


 

This table displays all metadata directly associated to this object as RDF triples.

95 TRIPLES      23 PREDICATES      31 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/3-540-46084-5_93 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N64837b6bd9254f46a94ca2403cedfa08
4 schema:citation sg:pub.10.1007/3-540-44668-0_7
5 sg:pub.10.1023/a:1007618119488
6 sg:pub.10.1023/a:1009715923555
7 sg:pub.10.1038/355161a0
8 schema:datePublished 2002
9 schema:datePublishedReg 2002-01-01
10 schema:description In this paper we introduce a mixed approach for the semi-supervised data problem. Our approach consists of an ensemble unsupervised learning part where the labeled and unlabeled points are segmented into clusters. Continuing, we take advantage of the a priori information of the labeled points to assign classes to clusters and proceed to predicting with the ensemble method new incoming ones. Thus, we can finally conclude classifying new data points according to the segmentation of the whole set and the association of its clusters to the classes.
11 schema:editor N7ac71faf46f346929157ba6ef626ce1f
12 schema:genre chapter
13 schema:inLanguage en
14 schema:isAccessibleForFree true
15 schema:isPartOf N6f47d072dffb41328dbfbc19ca9aa60f
16 schema:name A Mixed Ensemble Approach for the Semi-supervised Problem
17 schema:pagination 571-576
18 schema:productId N09a2d4a71a4d42eeaf3f4c307c5dab72
19 N870f4c0305524ee9bc0b8563647f0ce6
20 Nde90f92155f14f96bcc6082366576038
21 schema:publisher N88cb493e42004a37acedcf0313456f9d
22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009723087
23 https://doi.org/10.1007/3-540-46084-5_93
24 schema:sdDatePublished 2019-04-15T21:35
25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
26 schema:sdPublisher N114709a835f74087bdcf291090f8d7bd
27 schema:url http://link.springer.com/10.1007/3-540-46084-5_93
28 sgo:license sg:explorer/license/
29 sgo:sdDataset chapters
30 rdf:type schema:Chapter
31 N09a2d4a71a4d42eeaf3f4c307c5dab72 schema:name doi
32 schema:value 10.1007/3-540-46084-5_93
33 rdf:type schema:PropertyValue
34 N114709a835f74087bdcf291090f8d7bd schema:name Springer Nature - SN SciGraph project
35 rdf:type schema:Organization
36 N5e5884dcb28c4d6586a9c2ba46848700 rdf:first sg:person.01203647327.42
37 rdf:rest Nda07e0cfffdf4fb2a6e770d06d82e3b9
38 N64837b6bd9254f46a94ca2403cedfa08 rdf:first sg:person.011602321425.21
39 rdf:rest N5e5884dcb28c4d6586a9c2ba46848700
40 N6f47d072dffb41328dbfbc19ca9aa60f schema:isbn 978-3-540-44074-1
41 978-3-540-46084-8
42 schema:name Artificial Neural Networks — ICANN 2002
43 rdf:type schema:Book
44 N7ac71faf46f346929157ba6ef626ce1f rdf:first Neb0037a7ee3a43ae875b0d39fa48c9d9
45 rdf:rest rdf:nil
46 N870f4c0305524ee9bc0b8563647f0ce6 schema:name readcube_id
47 schema:value 2e51c6fd9857f875d851596e83ec1027d16cce8b3261c17d0328bc22ab7a38fc
48 rdf:type schema:PropertyValue
49 N88cb493e42004a37acedcf0313456f9d schema:location Berlin, Heidelberg
50 schema:name Springer Berlin Heidelberg
51 rdf:type schema:Organisation
52 Nda07e0cfffdf4fb2a6e770d06d82e3b9 rdf:first sg:person.01355621653.94
53 rdf:rest rdf:nil
54 Nde90f92155f14f96bcc6082366576038 schema:name dimensions_id
55 schema:value pub.1009723087
56 rdf:type schema:PropertyValue
57 Neb0037a7ee3a43ae875b0d39fa48c9d9 schema:familyName Dorronsoro
58 schema:givenName José R.
59 rdf:type schema:Person
60 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
61 schema:name Information and Computing Sciences
62 rdf:type schema:DefinedTerm
63 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
64 schema:name Artificial Intelligence and Image Processing
65 rdf:type schema:DefinedTerm
66 sg:person.011602321425.21 schema:affiliation https://www.grid.ac/institutes/grid.5329.d
67 schema:familyName Dimitriadou
68 schema:givenName Evgenia
69 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011602321425.21
70 rdf:type schema:Person
71 sg:person.01203647327.42 schema:affiliation https://www.grid.ac/institutes/grid.5329.d
72 schema:familyName Weingessel
73 schema:givenName Andreas
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01203647327.42
75 rdf:type schema:Person
76 sg:person.01355621653.94 schema:affiliation https://www.grid.ac/institutes/grid.5329.d
77 schema:familyName Hornik
78 schema:givenName Kurt
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355621653.94
80 rdf:type schema:Person
81 sg:pub.10.1007/3-540-44668-0_7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037922808
82 https://doi.org/10.1007/3-540-44668-0_7
83 rdf:type schema:CreativeWork
84 sg:pub.10.1023/a:1007618119488 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003090683
85 https://doi.org/10.1023/a:1007618119488
86 rdf:type schema:CreativeWork
87 sg:pub.10.1023/a:1009715923555 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042048349
88 https://doi.org/10.1023/a:1009715923555
89 rdf:type schema:CreativeWork
90 sg:pub.10.1038/355161a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051732355
91 https://doi.org/10.1038/355161a0
92 rdf:type schema:CreativeWork
93 https://www.grid.ac/institutes/grid.5329.d schema:alternateName TU Wien
94 schema:name Institut für Statistik und Wahrscheinlichkeitstheorie, Technische Universität Wien, Wiedner Hauptstraße 8-10/1071, A-1040 Wien, Austria
95 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...