Spike- Driven Synaptic Plasticity for Learning Correlated Patterns of Asynchronous Activity View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2002-08-21

AUTHORS

Stefano Fusi

ABSTRACT

Long term synaptic changes induced by neural spike activity are believed to underlie learning and memory. Spike-driven long term synaptic plasticity has been investigated in simplified situations in which the patterns of asynchronous activity to be encoded were statistically independent. An extra regulatory mechanism is required to extend the learning capability to more complex and natural stimuli. This mechanism is provided by the effects of the action potentials that are believed to be responsible for spike-timing dependent plasticity. These effects, when combined with the dependence of synaptic plasticity on the post-synaptic depolarization, produce the learning rule needed for storing correlated patterns of asynchronous neuronal activity. More... »

PAGES

241-247

Book

TITLE

Artificial Neural Networks — ICANN 2002

ISBN

978-3-540-44074-1
978-3-540-46084-8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/3-540-46084-5_40

DOI

http://dx.doi.org/10.1007/3-540-46084-5_40

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1024453598


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Physiology, University of Bern, B\u00fchlplatz 5, CH-3012, Switzerland", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Institute of Physiology, University of Bern, B\u00fchlplatz 5, CH-3012, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fusi", 
        "givenName": "Stefano", 
        "id": "sg:person.01326702501.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326702501.50"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2002-08-21", 
    "datePublishedReg": "2002-08-21", 
    "description": "Long term synaptic changes induced by neural spike activity are believed to underlie learning and memory. Spike-driven long term synaptic plasticity has been investigated in simplified situations in which the patterns of asynchronous activity to be encoded were statistically independent. An extra regulatory mechanism is required to extend the learning capability to more complex and natural stimuli. This mechanism is provided by the effects of the action potentials that are believed to be responsible for spike-timing dependent plasticity. These effects, when combined with the dependence of synaptic plasticity on the post-synaptic depolarization, produce the learning rule needed for storing correlated patterns of asynchronous neuronal activity.", 
    "editor": [
      {
        "familyName": "Dorronsoro", 
        "givenName": "Jos\u00e9 R.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/3-540-46084-5_40", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-44074-1", 
        "978-3-540-46084-8"
      ], 
      "name": "Artificial Neural Networks \u2014 ICANN 2002", 
      "type": "Book"
    }, 
    "keywords": [
      "synaptic plasticity", 
      "post-synaptic depolarization", 
      "long-term synaptic plasticity", 
      "long-term synaptic changes", 
      "term synaptic plasticity", 
      "neural spike activity", 
      "neuronal activity", 
      "synaptic changes", 
      "spike activity", 
      "action potentials", 
      "asynchronous activity", 
      "spike-timing dependent plasticity", 
      "natural stimuli", 
      "spike-driven synaptic plasticity", 
      "plasticity", 
      "regulatory mechanisms", 
      "activity", 
      "dependent plasticity", 
      "depolarization", 
      "effect", 
      "patterns", 
      "stimuli", 
      "mechanism", 
      "changes", 
      "potential", 
      "memory", 
      "correlated patterns", 
      "situation", 
      "learning rule", 
      "learning", 
      "dependence", 
      "capability", 
      "rules", 
      "simplified situation"
    ], 
    "name": "Spike- Driven Synaptic Plasticity for Learning Correlated Patterns of Asynchronous Activity", 
    "pagination": "241-247", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1024453598"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/3-540-46084-5_40"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/3-540-46084-5_40", 
      "https://app.dimensions.ai/details/publication/pub.1024453598"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-10T10:46", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/chapter/chapter_314.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/3-540-46084-5_40"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-540-46084-5_40'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-540-46084-5_40'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-540-46084-5_40'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-540-46084-5_40'


 

This table displays all metadata directly associated to this object as RDF triples.

94 TRIPLES      23 PREDICATES      59 URIs      52 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/3-540-46084-5_40 schema:about anzsrc-for:11
2 anzsrc-for:1109
3 schema:author N0b1f13adc70540fda266e43ea225caba
4 schema:datePublished 2002-08-21
5 schema:datePublishedReg 2002-08-21
6 schema:description Long term synaptic changes induced by neural spike activity are believed to underlie learning and memory. Spike-driven long term synaptic plasticity has been investigated in simplified situations in which the patterns of asynchronous activity to be encoded were statistically independent. An extra regulatory mechanism is required to extend the learning capability to more complex and natural stimuli. This mechanism is provided by the effects of the action potentials that are believed to be responsible for spike-timing dependent plasticity. These effects, when combined with the dependence of synaptic plasticity on the post-synaptic depolarization, produce the learning rule needed for storing correlated patterns of asynchronous neuronal activity.
7 schema:editor N015564dcebca4e4c8f86e070d0d46718
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Nc29061a6b52d41118691361b88a19ea2
12 schema:keywords action potentials
13 activity
14 asynchronous activity
15 capability
16 changes
17 correlated patterns
18 dependence
19 dependent plasticity
20 depolarization
21 effect
22 learning
23 learning rule
24 long-term synaptic changes
25 long-term synaptic plasticity
26 mechanism
27 memory
28 natural stimuli
29 neural spike activity
30 neuronal activity
31 patterns
32 plasticity
33 post-synaptic depolarization
34 potential
35 regulatory mechanisms
36 rules
37 simplified situation
38 situation
39 spike activity
40 spike-driven synaptic plasticity
41 spike-timing dependent plasticity
42 stimuli
43 synaptic changes
44 synaptic plasticity
45 term synaptic plasticity
46 schema:name Spike- Driven Synaptic Plasticity for Learning Correlated Patterns of Asynchronous Activity
47 schema:pagination 241-247
48 schema:productId N247e0f141e7f49f48d481a6eb3de1395
49 N521900b3f2ff4b4db4399a7ad0e0c7b8
50 schema:publisher Nb6acb4e3633646e2bada23e4b6b249b7
51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024453598
52 https://doi.org/10.1007/3-540-46084-5_40
53 schema:sdDatePublished 2022-05-10T10:46
54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
55 schema:sdPublisher Nb56d17bf3a1f4a86b20a6bdc1761fc62
56 schema:url https://doi.org/10.1007/3-540-46084-5_40
57 sgo:license sg:explorer/license/
58 sgo:sdDataset chapters
59 rdf:type schema:Chapter
60 N015564dcebca4e4c8f86e070d0d46718 rdf:first Nd73102b8dfb446cd99009fd00a953e6c
61 rdf:rest rdf:nil
62 N0b1f13adc70540fda266e43ea225caba rdf:first sg:person.01326702501.50
63 rdf:rest rdf:nil
64 N247e0f141e7f49f48d481a6eb3de1395 schema:name doi
65 schema:value 10.1007/3-540-46084-5_40
66 rdf:type schema:PropertyValue
67 N521900b3f2ff4b4db4399a7ad0e0c7b8 schema:name dimensions_id
68 schema:value pub.1024453598
69 rdf:type schema:PropertyValue
70 Nb56d17bf3a1f4a86b20a6bdc1761fc62 schema:name Springer Nature - SN SciGraph project
71 rdf:type schema:Organization
72 Nb6acb4e3633646e2bada23e4b6b249b7 schema:name Springer Nature
73 rdf:type schema:Organisation
74 Nc29061a6b52d41118691361b88a19ea2 schema:isbn 978-3-540-44074-1
75 978-3-540-46084-8
76 schema:name Artificial Neural Networks — ICANN 2002
77 rdf:type schema:Book
78 Nd73102b8dfb446cd99009fd00a953e6c schema:familyName Dorronsoro
79 schema:givenName José R.
80 rdf:type schema:Person
81 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
82 schema:name Medical and Health Sciences
83 rdf:type schema:DefinedTerm
84 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
85 schema:name Neurosciences
86 rdf:type schema:DefinedTerm
87 sg:person.01326702501.50 schema:affiliation grid-institutes:None
88 schema:familyName Fusi
89 schema:givenName Stefano
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326702501.50
91 rdf:type schema:Person
92 grid-institutes:None schema:alternateName Institute of Physiology, University of Bern, Bühlplatz 5, CH-3012, Switzerland
93 schema:name Institute of Physiology, University of Bern, Bühlplatz 5, CH-3012, Switzerland
94 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...