Spike- Driven Synaptic Plasticity for Learning Correlated Patterns of Asynchronous Activity View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2002-08-21

AUTHORS

Stefano Fusi

ABSTRACT

Long term synaptic changes induced by neural spike activity are believed to underlie learning and memory. Spike-driven long term synaptic plasticity has been investigated in simplified situations in which the patterns of asynchronous activity to be encoded were statistically independent. An extra regulatory mechanism is required to extend the learning capability to more complex and natural stimuli. This mechanism is provided by the effects of the action potentials that are believed to be responsible for spike-timing dependent plasticity. These effects, when combined with the dependence of synaptic plasticity on the post-synaptic depolarization, produce the learning rule needed for storing correlated patterns of asynchronous neuronal activity. More... »

PAGES

241-247

Book

TITLE

Artificial Neural Networks — ICANN 2002

ISBN

978-3-540-44074-1
978-3-540-46084-8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/3-540-46084-5_40

DOI

http://dx.doi.org/10.1007/3-540-46084-5_40

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1024453598


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Physiology, University of Bern, B\u00fchlplatz 5, CH-3012, Switzerland", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Institute of Physiology, University of Bern, B\u00fchlplatz 5, CH-3012, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fusi", 
        "givenName": "Stefano", 
        "id": "sg:person.01326702501.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326702501.50"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2002-08-21", 
    "datePublishedReg": "2002-08-21", 
    "description": "Long term synaptic changes induced by neural spike activity are believed to underlie learning and memory. Spike-driven long term synaptic plasticity has been investigated in simplified situations in which the patterns of asynchronous activity to be encoded were statistically independent. An extra regulatory mechanism is required to extend the learning capability to more complex and natural stimuli. This mechanism is provided by the effects of the action potentials that are believed to be responsible for spike-timing dependent plasticity. These effects, when combined with the dependence of synaptic plasticity on the post-synaptic depolarization, produce the learning rule needed for storing correlated patterns of asynchronous neuronal activity.", 
    "editor": [
      {
        "familyName": "Dorronsoro", 
        "givenName": "Jos\u00e9 R.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/3-540-46084-5_40", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-44074-1", 
        "978-3-540-46084-8"
      ], 
      "name": "Artificial Neural Networks \u2014 ICANN 2002", 
      "type": "Book"
    }, 
    "keywords": [
      "synaptic plasticity", 
      "post-synaptic depolarization", 
      "long term synaptic plasticity", 
      "neural spike activity", 
      "term synaptic plasticity", 
      "spike activity", 
      "neuronal activity", 
      "action potentials", 
      "synaptic changes", 
      "asynchronous activity", 
      "spike-driven synaptic plasticity", 
      "natural stimuli", 
      "spike-timing dependent plasticity", 
      "plasticity", 
      "activity", 
      "regulatory mechanisms", 
      "dependent plasticity", 
      "depolarization", 
      "effect", 
      "stimuli", 
      "patterns", 
      "mechanism", 
      "changes", 
      "correlated patterns", 
      "potential", 
      "memory", 
      "situation", 
      "learning rule", 
      "learning", 
      "dependence", 
      "capability", 
      "simplified situation", 
      "rules", 
      "Long term synaptic changes", 
      "term synaptic changes", 
      "Spike-driven long term synaptic plasticity", 
      "extra regulatory mechanism", 
      "asynchronous neuronal activity"
    ], 
    "name": "Spike- Driven Synaptic Plasticity for Learning Correlated Patterns of Asynchronous Activity", 
    "pagination": "241-247", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1024453598"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/3-540-46084-5_40"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/3-540-46084-5_40", 
      "https://app.dimensions.ai/details/publication/pub.1024453598"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:13", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_236.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/3-540-46084-5_40"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-540-46084-5_40'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-540-46084-5_40'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-540-46084-5_40'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-540-46084-5_40'


 

This table displays all metadata directly associated to this object as RDF triples.

98 TRIPLES      23 PREDICATES      63 URIs      56 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/3-540-46084-5_40 schema:about anzsrc-for:11
2 anzsrc-for:1109
3 schema:author Nd36a8ad264bd4c09920a099ef9c673fa
4 schema:datePublished 2002-08-21
5 schema:datePublishedReg 2002-08-21
6 schema:description Long term synaptic changes induced by neural spike activity are believed to underlie learning and memory. Spike-driven long term synaptic plasticity has been investigated in simplified situations in which the patterns of asynchronous activity to be encoded were statistically independent. An extra regulatory mechanism is required to extend the learning capability to more complex and natural stimuli. This mechanism is provided by the effects of the action potentials that are believed to be responsible for spike-timing dependent plasticity. These effects, when combined with the dependence of synaptic plasticity on the post-synaptic depolarization, produce the learning rule needed for storing correlated patterns of asynchronous neuronal activity.
7 schema:editor N5d2eac0fa03c4afe910b5e2a617f262b
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Ne36968ea6439453bbd152adb133f9242
12 schema:keywords Long term synaptic changes
13 Spike-driven long term synaptic plasticity
14 action potentials
15 activity
16 asynchronous activity
17 asynchronous neuronal activity
18 capability
19 changes
20 correlated patterns
21 dependence
22 dependent plasticity
23 depolarization
24 effect
25 extra regulatory mechanism
26 learning
27 learning rule
28 long term synaptic plasticity
29 mechanism
30 memory
31 natural stimuli
32 neural spike activity
33 neuronal activity
34 patterns
35 plasticity
36 post-synaptic depolarization
37 potential
38 regulatory mechanisms
39 rules
40 simplified situation
41 situation
42 spike activity
43 spike-driven synaptic plasticity
44 spike-timing dependent plasticity
45 stimuli
46 synaptic changes
47 synaptic plasticity
48 term synaptic changes
49 term synaptic plasticity
50 schema:name Spike- Driven Synaptic Plasticity for Learning Correlated Patterns of Asynchronous Activity
51 schema:pagination 241-247
52 schema:productId N35d974a3399d45da8f592596e73fc11c
53 N576c31f8ef564fb88ef02a7cd984c065
54 schema:publisher Nd679f0aaf6b94e72b701be05a65f5e78
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024453598
56 https://doi.org/10.1007/3-540-46084-5_40
57 schema:sdDatePublished 2022-01-01T19:13
58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
59 schema:sdPublisher Nb444a3fd8e1e4eefbd944f09e93e388b
60 schema:url https://doi.org/10.1007/3-540-46084-5_40
61 sgo:license sg:explorer/license/
62 sgo:sdDataset chapters
63 rdf:type schema:Chapter
64 N35d974a3399d45da8f592596e73fc11c schema:name dimensions_id
65 schema:value pub.1024453598
66 rdf:type schema:PropertyValue
67 N4ec6e32662574df1824e2a5ba668497e schema:familyName Dorronsoro
68 schema:givenName José R.
69 rdf:type schema:Person
70 N576c31f8ef564fb88ef02a7cd984c065 schema:name doi
71 schema:value 10.1007/3-540-46084-5_40
72 rdf:type schema:PropertyValue
73 N5d2eac0fa03c4afe910b5e2a617f262b rdf:first N4ec6e32662574df1824e2a5ba668497e
74 rdf:rest rdf:nil
75 Nb444a3fd8e1e4eefbd944f09e93e388b schema:name Springer Nature - SN SciGraph project
76 rdf:type schema:Organization
77 Nd36a8ad264bd4c09920a099ef9c673fa rdf:first sg:person.01326702501.50
78 rdf:rest rdf:nil
79 Nd679f0aaf6b94e72b701be05a65f5e78 schema:name Springer Nature
80 rdf:type schema:Organisation
81 Ne36968ea6439453bbd152adb133f9242 schema:isbn 978-3-540-44074-1
82 978-3-540-46084-8
83 schema:name Artificial Neural Networks — ICANN 2002
84 rdf:type schema:Book
85 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
86 schema:name Medical and Health Sciences
87 rdf:type schema:DefinedTerm
88 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
89 schema:name Neurosciences
90 rdf:type schema:DefinedTerm
91 sg:person.01326702501.50 schema:affiliation grid-institutes:None
92 schema:familyName Fusi
93 schema:givenName Stefano
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326702501.50
95 rdf:type schema:Person
96 grid-institutes:None schema:alternateName Institute of Physiology, University of Bern, Bühlplatz 5, CH-3012, Switzerland
97 schema:name Institute of Physiology, University of Bern, Bühlplatz 5, CH-3012, Switzerland
98 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...