When NMDA Receptor Conductances Increase Inter- spike Interval Variability View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2002-08-21

AUTHORS

Giancarlo La Camera , Stefano Fusi , Walter Senn , Alexander Rauch , Hans-R. Lüscher

ABSTRACT

We analyze extensively the temporal properties of the train of spikes emitted by a simple model neuron as a function of the statistics of the synaptic input. In particular we focus on the asynchronous case, in which the synaptic inputs are random and uncorrelated. We show that the NMDA component acts as a non-stationary input that varies on longer time scales than the inter-spike intervals. In the sub-threshold regime, this can increase dramatically the coefficient of variability (bringing it beyond one). The analysis provides also simple guidelines for searching parameters that maximize irregularity. More... »

PAGES

235-240

Book

TITLE

Artificial Neural Networks — ICANN 2002

ISBN

978-3-540-44074-1
978-3-540-46084-8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/3-540-46084-5_39

DOI

http://dx.doi.org/10.1007/3-540-46084-5_39

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1006971522


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Physiology, University of Bern, B\u00fchlplatz 5, 3012, Bern, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.5734.5", 
          "name": [
            "Institute of Physiology, University of Bern, B\u00fchlplatz 5, 3012, Bern, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "La Camera", 
        "givenName": "Giancarlo", 
        "id": "sg:person.01131460265.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01131460265.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Physiology, University of Bern, B\u00fchlplatz 5, 3012, Bern, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.5734.5", 
          "name": [
            "Institute of Physiology, University of Bern, B\u00fchlplatz 5, 3012, Bern, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fusi", 
        "givenName": "Stefano", 
        "id": "sg:person.01326702501.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326702501.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Physiology, University of Bern, B\u00fchlplatz 5, 3012, Bern, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.5734.5", 
          "name": [
            "Institute of Physiology, University of Bern, B\u00fchlplatz 5, 3012, Bern, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Senn", 
        "givenName": "Walter", 
        "id": "sg:person.01152027440.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152027440.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Physiology, University of Bern, B\u00fchlplatz 5, 3012, Bern, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.5734.5", 
          "name": [
            "Institute of Physiology, University of Bern, B\u00fchlplatz 5, 3012, Bern, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rauch", 
        "givenName": "Alexander", 
        "id": "sg:person.0664141233.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664141233.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Physiology, University of Bern, B\u00fchlplatz 5, 3012, Bern, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.5734.5", 
          "name": [
            "Institute of Physiology, University of Bern, B\u00fchlplatz 5, 3012, Bern, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "L\u00fcscher", 
        "givenName": "Hans-R.", 
        "id": "sg:person.0751222630.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751222630.09"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2002-08-21", 
    "datePublishedReg": "2002-08-21", 
    "description": "We analyze extensively the temporal properties of the train of spikes emitted by a simple model neuron as a function of the statistics of the synaptic input. In particular we focus on the asynchronous case, in which the synaptic inputs are random and uncorrelated. We show that the NMDA component acts as a non-stationary input that varies on longer time scales than the inter-spike intervals. In the sub-threshold regime, this can increase dramatically the coefficient of variability (bringing it beyond one). The analysis provides also simple guidelines for searching parameters that maximize irregularity.", 
    "editor": [
      {
        "familyName": "Dorronsoro", 
        "givenName": "Jos\u00e9 R.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/3-540-46084-5_39", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-44074-1", 
        "978-3-540-46084-8"
      ], 
      "name": "Artificial Neural Networks \u2014 ICANN 2002", 
      "type": "Book"
    }, 
    "keywords": [
      "synaptic inputs", 
      "train of spikes", 
      "NMDA component", 
      "inter-spike intervals", 
      "interval variability", 
      "simple model neurons", 
      "model neurons", 
      "coefficient of variability", 
      "neurons", 
      "guidelines", 
      "simple guidelines", 
      "intervals", 
      "spikes", 
      "cases", 
      "variability", 
      "function", 
      "temporal properties", 
      "irregularities", 
      "scale", 
      "analysis", 
      "train", 
      "statistics", 
      "components", 
      "input", 
      "parameters", 
      "properties", 
      "coefficient", 
      "non-stationary inputs", 
      "asynchronous case", 
      "longer time scales", 
      "time scales", 
      "regime", 
      "sub-threshold regime", 
      "NMDA Receptor Conductances Increase Inter- spike Interval Variability", 
      "Receptor Conductances Increase Inter- spike Interval Variability", 
      "Conductances Increase Inter- spike Interval Variability", 
      "Increase Inter- spike Interval Variability", 
      "Inter- spike Interval Variability"
    ], 
    "name": "When NMDA Receptor Conductances Increase Inter- spike Interval Variability", 
    "pagination": "235-240", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1006971522"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/3-540-46084-5_39"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/3-540-46084-5_39", 
      "https://app.dimensions.ai/details/publication/pub.1006971522"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-11-01T18:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/chapter/chapter_347.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/3-540-46084-5_39"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-540-46084-5_39'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-540-46084-5_39'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-540-46084-5_39'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-540-46084-5_39'


 

This table displays all metadata directly associated to this object as RDF triples.

126 TRIPLES      23 PREDICATES      63 URIs      56 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/3-540-46084-5_39 schema:about anzsrc-for:11
2 anzsrc-for:1109
3 schema:author Naac72884967c46019c7be3939ec8153a
4 schema:datePublished 2002-08-21
5 schema:datePublishedReg 2002-08-21
6 schema:description We analyze extensively the temporal properties of the train of spikes emitted by a simple model neuron as a function of the statistics of the synaptic input. In particular we focus on the asynchronous case, in which the synaptic inputs are random and uncorrelated. We show that the NMDA component acts as a non-stationary input that varies on longer time scales than the inter-spike intervals. In the sub-threshold regime, this can increase dramatically the coefficient of variability (bringing it beyond one). The analysis provides also simple guidelines for searching parameters that maximize irregularity.
7 schema:editor Ncb4f912e23a14abcbe87304eef2fa22d
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N361b2eabcec44bb3861e7edca941ace4
12 schema:keywords Conductances Increase Inter- spike Interval Variability
13 Increase Inter- spike Interval Variability
14 Inter- spike Interval Variability
15 NMDA Receptor Conductances Increase Inter- spike Interval Variability
16 NMDA component
17 Receptor Conductances Increase Inter- spike Interval Variability
18 analysis
19 asynchronous case
20 cases
21 coefficient
22 coefficient of variability
23 components
24 function
25 guidelines
26 input
27 inter-spike intervals
28 interval variability
29 intervals
30 irregularities
31 longer time scales
32 model neurons
33 neurons
34 non-stationary inputs
35 parameters
36 properties
37 regime
38 scale
39 simple guidelines
40 simple model neurons
41 spikes
42 statistics
43 sub-threshold regime
44 synaptic inputs
45 temporal properties
46 time scales
47 train
48 train of spikes
49 variability
50 schema:name When NMDA Receptor Conductances Increase Inter- spike Interval Variability
51 schema:pagination 235-240
52 schema:productId N0a735877a6db47458e4b53f1a45c955f
53 N5a6ed17d30434e9bbbac199829c702eb
54 schema:publisher Na86edf352a754f499a9141249729f8ce
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006971522
56 https://doi.org/10.1007/3-540-46084-5_39
57 schema:sdDatePublished 2021-11-01T18:56
58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
59 schema:sdPublisher N5b842bcf44a1482e96cd95b9ac96dca8
60 schema:url https://doi.org/10.1007/3-540-46084-5_39
61 sgo:license sg:explorer/license/
62 sgo:sdDataset chapters
63 rdf:type schema:Chapter
64 N0a735877a6db47458e4b53f1a45c955f schema:name doi
65 schema:value 10.1007/3-540-46084-5_39
66 rdf:type schema:PropertyValue
67 N361b2eabcec44bb3861e7edca941ace4 schema:isbn 978-3-540-44074-1
68 978-3-540-46084-8
69 schema:name Artificial Neural Networks — ICANN 2002
70 rdf:type schema:Book
71 N57ab4eae9da84d14bb8757e09812e25e rdf:first sg:person.0751222630.09
72 rdf:rest rdf:nil
73 N5a6ed17d30434e9bbbac199829c702eb schema:name dimensions_id
74 schema:value pub.1006971522
75 rdf:type schema:PropertyValue
76 N5b842bcf44a1482e96cd95b9ac96dca8 schema:name Springer Nature - SN SciGraph project
77 rdf:type schema:Organization
78 N73cde1ee136341a7a136d328c62cabee rdf:first sg:person.01326702501.50
79 rdf:rest Ne04e5b2c578a478fa64c2ee125b5c9d6
80 Na86edf352a754f499a9141249729f8ce schema:name Springer Nature
81 rdf:type schema:Organisation
82 Naac72884967c46019c7be3939ec8153a rdf:first sg:person.01131460265.13
83 rdf:rest N73cde1ee136341a7a136d328c62cabee
84 Ncb4f912e23a14abcbe87304eef2fa22d rdf:first Nfdd81479c92f4bbabbad0d9602d59266
85 rdf:rest rdf:nil
86 Nd10e4e84eb504f35953def161e3cb2e8 rdf:first sg:person.0664141233.41
87 rdf:rest N57ab4eae9da84d14bb8757e09812e25e
88 Ne04e5b2c578a478fa64c2ee125b5c9d6 rdf:first sg:person.01152027440.28
89 rdf:rest Nd10e4e84eb504f35953def161e3cb2e8
90 Nfdd81479c92f4bbabbad0d9602d59266 schema:familyName Dorronsoro
91 schema:givenName José R.
92 rdf:type schema:Person
93 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
94 schema:name Medical and Health Sciences
95 rdf:type schema:DefinedTerm
96 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
97 schema:name Neurosciences
98 rdf:type schema:DefinedTerm
99 sg:person.01131460265.13 schema:affiliation grid-institutes:grid.5734.5
100 schema:familyName La Camera
101 schema:givenName Giancarlo
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01131460265.13
103 rdf:type schema:Person
104 sg:person.01152027440.28 schema:affiliation grid-institutes:grid.5734.5
105 schema:familyName Senn
106 schema:givenName Walter
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152027440.28
108 rdf:type schema:Person
109 sg:person.01326702501.50 schema:affiliation grid-institutes:grid.5734.5
110 schema:familyName Fusi
111 schema:givenName Stefano
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326702501.50
113 rdf:type schema:Person
114 sg:person.0664141233.41 schema:affiliation grid-institutes:grid.5734.5
115 schema:familyName Rauch
116 schema:givenName Alexander
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664141233.41
118 rdf:type schema:Person
119 sg:person.0751222630.09 schema:affiliation grid-institutes:grid.5734.5
120 schema:familyName Lüscher
121 schema:givenName Hans-R.
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751222630.09
123 rdf:type schema:Person
124 grid-institutes:grid.5734.5 schema:alternateName Institute of Physiology, University of Bern, Bühlplatz 5, 3012, Bern, Switzerland
125 schema:name Institute of Physiology, University of Bern, Bühlplatz 5, 3012, Bern, Switzerland
126 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...