Firing Rate Adaptation without Losing Sensitivity to Input Fluctuations View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2002-08-21

AUTHORS

Giancarlo La Camera , Alexander Rauch , Walter Senn , Hans-R. Lüscher , Stefano Fusi

ABSTRACT

Spike frequency adaptation is an important cellular mechanism by which neocortical neurons accommodate their responses to transient, as well as sustained, stimulations. This can be quantified by the slope reduction in the f- I curves due to adaptation. When the neuron is driven by a noisy, in vivo-like current, adaptation might also affect the sensitivity to the fluctuations of the input. We investigate how adaptation, due to calcium-dependent potassium current, affects the dynamics of the depolarization, as well as the stationary f- I curves of a white noise driven, integrate-and-fire model neuron. In addition to decreasing the slope of the f- I curves, adaptation of this type preserves the sensitivity of the neuron to the fluctuations of the input. More... »

PAGES

180-185

Book

TITLE

Artificial Neural Networks — ICANN 2002

ISBN

978-3-540-44074-1
978-3-540-46084-8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/3-540-46084-5_30

DOI

http://dx.doi.org/10.1007/3-540-46084-5_30

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1029762942


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Physiology, University of Bern, CH-3012, B\u00fchlplatz 5, Switzerland", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Institute of Physiology, University of Bern, CH-3012, B\u00fchlplatz 5, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "La Camera", 
        "givenName": "Giancarlo", 
        "id": "sg:person.01131460265.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01131460265.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Physiology, University of Bern, CH-3012, B\u00fchlplatz 5, Switzerland", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Institute of Physiology, University of Bern, CH-3012, B\u00fchlplatz 5, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rauch", 
        "givenName": "Alexander", 
        "id": "sg:person.0664141233.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664141233.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Physiology, University of Bern, CH-3012, B\u00fchlplatz 5, Switzerland", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Institute of Physiology, University of Bern, CH-3012, B\u00fchlplatz 5, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Senn", 
        "givenName": "Walter", 
        "id": "sg:person.01152027440.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152027440.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Physiology, University of Bern, CH-3012, B\u00fchlplatz 5, Switzerland", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Institute of Physiology, University of Bern, CH-3012, B\u00fchlplatz 5, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "L\u00fcscher", 
        "givenName": "Hans-R.", 
        "id": "sg:person.0751222630.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751222630.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Physiology, University of Bern, CH-3012, B\u00fchlplatz 5, Switzerland", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Institute of Physiology, University of Bern, CH-3012, B\u00fchlplatz 5, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fusi", 
        "givenName": "Stefano", 
        "id": "sg:person.01326702501.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326702501.50"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2002-08-21", 
    "datePublishedReg": "2002-08-21", 
    "description": "Spike frequency adaptation is an important cellular mechanism by which neocortical neurons accommodate their responses to transient, as well as sustained, stimulations. This can be quantified by the slope reduction in the f- I curves due to adaptation. When the neuron is driven by a noisy, in vivo-like current, adaptation might also affect the sensitivity to the fluctuations of the input. We investigate how adaptation, due to calcium-dependent potassium current, affects the dynamics of the depolarization, as well as the stationary f- I curves of a white noise driven, integrate-and-fire model neuron. In addition to decreasing the slope of the f- I curves, adaptation of this type preserves the sensitivity of the neuron to the fluctuations of the input.", 
    "editor": [
      {
        "familyName": "Dorronsoro", 
        "givenName": "Jos\u00e9 R.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/3-540-46084-5_30", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-44074-1", 
        "978-3-540-46084-8"
      ], 
      "name": "Artificial Neural Networks \u2014 ICANN 2002", 
      "type": "Book"
    }, 
    "keywords": [
      "calcium-dependent potassium current", 
      "neocortical neurons", 
      "potassium current", 
      "important cellular mechanism", 
      "neurons", 
      "frequency adaptation", 
      "cellular mechanisms", 
      "model neurons", 
      "slope reduction", 
      "stimulation", 
      "sensitivity", 
      "depolarization", 
      "fire model neurons", 
      "response", 
      "adaptation", 
      "curves", 
      "reduction", 
      "mechanism", 
      "input fluctuations", 
      "addition", 
      "types", 
      "transients", 
      "current", 
      "input", 
      "rate adaptation", 
      "slope", 
      "white noise", 
      "fluctuations", 
      "dynamics", 
      "noise", 
      "vivo-like current", 
      "stationary f"
    ], 
    "name": "Firing Rate Adaptation without Losing Sensitivity to Input Fluctuations", 
    "pagination": "180-185", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1029762942"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/3-540-46084-5_30"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/3-540-46084-5_30", 
      "https://app.dimensions.ai/details/publication/pub.1029762942"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-11-01T18:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/chapter/chapter_257.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/3-540-46084-5_30"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-540-46084-5_30'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-540-46084-5_30'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-540-46084-5_30'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-540-46084-5_30'


 

This table displays all metadata directly associated to this object as RDF triples.

120 TRIPLES      23 PREDICATES      57 URIs      50 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/3-540-46084-5_30 schema:about anzsrc-for:11
2 anzsrc-for:1109
3 schema:author Ne8e87aaadebb471e9a40e14218ebd5ba
4 schema:datePublished 2002-08-21
5 schema:datePublishedReg 2002-08-21
6 schema:description Spike frequency adaptation is an important cellular mechanism by which neocortical neurons accommodate their responses to transient, as well as sustained, stimulations. This can be quantified by the slope reduction in the f- I curves due to adaptation. When the neuron is driven by a noisy, in vivo-like current, adaptation might also affect the sensitivity to the fluctuations of the input. We investigate how adaptation, due to calcium-dependent potassium current, affects the dynamics of the depolarization, as well as the stationary f- I curves of a white noise driven, integrate-and-fire model neuron. In addition to decreasing the slope of the f- I curves, adaptation of this type preserves the sensitivity of the neuron to the fluctuations of the input.
7 schema:editor N95cd22d19667468e8e15e90ca6d2e3c7
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N6a52babdfaee450193272015b6307515
12 schema:keywords adaptation
13 addition
14 calcium-dependent potassium current
15 cellular mechanisms
16 current
17 curves
18 depolarization
19 dynamics
20 fire model neurons
21 fluctuations
22 frequency adaptation
23 important cellular mechanism
24 input
25 input fluctuations
26 mechanism
27 model neurons
28 neocortical neurons
29 neurons
30 noise
31 potassium current
32 rate adaptation
33 reduction
34 response
35 sensitivity
36 slope
37 slope reduction
38 stationary f
39 stimulation
40 transients
41 types
42 vivo-like current
43 white noise
44 schema:name Firing Rate Adaptation without Losing Sensitivity to Input Fluctuations
45 schema:pagination 180-185
46 schema:productId Ne12d556db63749108ff3e6c5fbe0c1f4
47 Ne6ba27ac326a4937bdcfe9e6c18a3a9b
48 schema:publisher N96110c01cb1f4eccb88aea1774989964
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029762942
50 https://doi.org/10.1007/3-540-46084-5_30
51 schema:sdDatePublished 2021-11-01T18:53
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher N1ea5694ece064510b2e45f7bab6c6cea
54 schema:url https://doi.org/10.1007/3-540-46084-5_30
55 sgo:license sg:explorer/license/
56 sgo:sdDataset chapters
57 rdf:type schema:Chapter
58 N1ea5694ece064510b2e45f7bab6c6cea schema:name Springer Nature - SN SciGraph project
59 rdf:type schema:Organization
60 N25cdfa0e9ce94683a071a2d90255ebeb schema:familyName Dorronsoro
61 schema:givenName José R.
62 rdf:type schema:Person
63 N6a52babdfaee450193272015b6307515 schema:isbn 978-3-540-44074-1
64 978-3-540-46084-8
65 schema:name Artificial Neural Networks — ICANN 2002
66 rdf:type schema:Book
67 N87320fbfac2a4a35be813fb3e145a520 rdf:first sg:person.01326702501.50
68 rdf:rest rdf:nil
69 N95cd22d19667468e8e15e90ca6d2e3c7 rdf:first N25cdfa0e9ce94683a071a2d90255ebeb
70 rdf:rest rdf:nil
71 N96110c01cb1f4eccb88aea1774989964 schema:name Springer Nature
72 rdf:type schema:Organisation
73 Na9f5188eae4b446bba7d5b939365e841 rdf:first sg:person.0664141233.41
74 rdf:rest Nd62ab8cd819d460e843697f2b552bab6
75 Nd62ab8cd819d460e843697f2b552bab6 rdf:first sg:person.01152027440.28
76 rdf:rest Nd766cee5458e4c6ba0c7fde0f4006037
77 Nd766cee5458e4c6ba0c7fde0f4006037 rdf:first sg:person.0751222630.09
78 rdf:rest N87320fbfac2a4a35be813fb3e145a520
79 Ne12d556db63749108ff3e6c5fbe0c1f4 schema:name doi
80 schema:value 10.1007/3-540-46084-5_30
81 rdf:type schema:PropertyValue
82 Ne6ba27ac326a4937bdcfe9e6c18a3a9b schema:name dimensions_id
83 schema:value pub.1029762942
84 rdf:type schema:PropertyValue
85 Ne8e87aaadebb471e9a40e14218ebd5ba rdf:first sg:person.01131460265.13
86 rdf:rest Na9f5188eae4b446bba7d5b939365e841
87 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
88 schema:name Medical and Health Sciences
89 rdf:type schema:DefinedTerm
90 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
91 schema:name Neurosciences
92 rdf:type schema:DefinedTerm
93 sg:person.01131460265.13 schema:affiliation grid-institutes:None
94 schema:familyName La Camera
95 schema:givenName Giancarlo
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01131460265.13
97 rdf:type schema:Person
98 sg:person.01152027440.28 schema:affiliation grid-institutes:None
99 schema:familyName Senn
100 schema:givenName Walter
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152027440.28
102 rdf:type schema:Person
103 sg:person.01326702501.50 schema:affiliation grid-institutes:None
104 schema:familyName Fusi
105 schema:givenName Stefano
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326702501.50
107 rdf:type schema:Person
108 sg:person.0664141233.41 schema:affiliation grid-institutes:None
109 schema:familyName Rauch
110 schema:givenName Alexander
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664141233.41
112 rdf:type schema:Person
113 sg:person.0751222630.09 schema:affiliation grid-institutes:None
114 schema:familyName Lüscher
115 schema:givenName Hans-R.
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751222630.09
117 rdf:type schema:Person
118 grid-institutes:None schema:alternateName Institute of Physiology, University of Bern, CH-3012, Bühlplatz 5, Switzerland
119 schema:name Institute of Physiology, University of Bern, CH-3012, Bühlplatz 5, Switzerland
120 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...