Business Agent View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2002-04-10

AUTHORS

I.-Heng Meng , Wei-Pang Yang , Wen-Chih Chen , Lu-Ping Chang

ABSTRACT

The Internet and World Wide Web represent an increasingly important channel for retail commerce as well as business transactions. However, there are almost 5 billion pages or sites on the Internet and WWW. There lacks an integrated mediator business agent which is around the internet to connect between suppliers and users. Therefore, an intelligent business broking agent between supply and demand is needed for using and sharing the information efficiently and effectively. In this paper we proposed a new business agent architecture. The Business Spy Agent (BSA) captures the supply and demand information from e-commence sites automatically. Supply and Demand Analysis Mechanism (SDAM) uses NLP technologies to extract product and trading information. Domain ontology is used to classify between supply and demand and to divide them into subsets. A benefit model is proposed to handle the pairing between sub-supply and sub-demand. And a divide-and-conquer algorithm is proposed to handle the whole matching between supply and demand. In the negotiation process, the architecture uses NLP and template to produce negotiation text to handle negotiation through mail. Finally, Hidden Business Mining Mechanism (HBMM) adopts data mining technology to achieve hidden business mining. The architecture covers the four process of buying behavior including support and need identification, Product brokering, Merchant brokering, Negotiation. More... »

PAGES

449-457

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/3-540-46043-8_45

DOI

http://dx.doi.org/10.1007/3-540-46043-8_45

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1006546872


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Computer and Information Science, National Chiao-Tung University, Hsinchu, Taiwan, R.O.C.", 
          "id": "http://www.grid.ac/institutes/grid.260539.b", 
          "name": [
            "Institute of Computer and Information Science, National Chiao-Tung University, Hsinchu, Taiwan, R.O.C."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Meng", 
        "givenName": "I.-Heng", 
        "id": "sg:person.011526455523.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011526455523.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Computer and Information Science, National Chiao-Tung University, Hsinchu, Taiwan, R.O.C.", 
          "id": "http://www.grid.ac/institutes/grid.260539.b", 
          "name": [
            "Institute of Computer and Information Science, National Chiao-Tung University, Hsinchu, Taiwan, R.O.C."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Wei-Pang", 
        "id": "sg:person.014374171260.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014374171260.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Advanced e-Commerce Technology Lab., Institute for Information Industry, ROC", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Advanced e-Commerce Technology Lab., Institute for Information Industry, ROC"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Wen-Chih", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Advanced e-Commerce Technology Lab., Institute for Information Industry, ROC", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Advanced e-Commerce Technology Lab., Institute for Information Industry, ROC"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chang", 
        "givenName": "Lu-Ping", 
        "type": "Person"
      }
    ], 
    "datePublished": "2002-04-10", 
    "datePublishedReg": "2002-04-10", 
    "description": "The Internet and World Wide Web represent an increasingly important channel for retail commerce as well as business transactions. However, there are almost 5 billion pages or sites on the Internet and WWW. There lacks an integrated mediator business agent which is around the internet to connect between suppliers and users. Therefore, an intelligent business broking agent between supply and demand is needed for using and sharing the information efficiently and effectively. In this paper we proposed a new business agent architecture. The Business Spy Agent (BSA) captures the supply and demand information from e-commence sites automatically. Supply and Demand Analysis Mechanism (SDAM) uses NLP technologies to extract product and trading information. Domain ontology is used to classify between supply and demand and to divide them into subsets. A benefit model is proposed to handle the pairing between sub-supply and sub-demand. And a divide-and-conquer algorithm is proposed to handle the whole matching between supply and demand. In the negotiation process, the architecture uses NLP and template to produce negotiation text to handle negotiation through mail. Finally, Hidden Business Mining Mechanism (HBMM) adopts data mining technology to achieve hidden business mining. The architecture covers the four process of buying behavior including support and need identification, Product brokering, Merchant brokering, Negotiation.", 
    "editor": [
      {
        "familyName": "Sloot", 
        "givenName": "Peter M. A.", 
        "type": "Person"
      }, 
      {
        "familyName": "Hoekstra", 
        "givenName": "Alfons G.", 
        "type": "Person"
      }, 
      {
        "familyName": "Tan", 
        "givenName": "C. J. Kenneth", 
        "type": "Person"
      }, 
      {
        "familyName": "Dongarra", 
        "givenName": "Jack J.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/3-540-46043-8_45", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-540-43591-4", 
        "978-3-540-46043-5"
      ], 
      "name": "Computational Science \u2014 ICCS 2002", 
      "type": "Book"
    }, 
    "keywords": [
      "business agents", 
      "data mining technology", 
      "World Wide Web", 
      "intelligent business", 
      "agent architecture", 
      "product brokering", 
      "merchant brokering", 
      "domain ontology", 
      "mining mechanism", 
      "NLP technology", 
      "mining technology", 
      "Wide Web", 
      "analysis mechanism", 
      "whole matching", 
      "retail commerce", 
      "conquer algorithm", 
      "business transactions", 
      "Internet", 
      "trading information", 
      "architecture", 
      "negotiation process", 
      "negotiation text", 
      "demand information", 
      "brokering", 
      "information", 
      "benefit model", 
      "technology", 
      "users", 
      "ontology", 
      "NLP", 
      "mining", 
      "commerce", 
      "algorithm", 
      "transactions", 
      "Web", 
      "pages", 
      "important channel", 
      "matching", 
      "demand", 
      "www", 
      "business", 
      "negotiations", 
      "mail", 
      "text", 
      "divide", 
      "suppliers", 
      "process", 
      "model", 
      "support", 
      "subset", 
      "channels", 
      "agents", 
      "identification", 
      "supply", 
      "mechanism", 
      "pairing", 
      "behavior", 
      "products", 
      "paper", 
      "sites"
    ], 
    "name": "Business Agent", 
    "pagination": "449-457", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1006546872"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/3-540-46043-8_45"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/3-540-46043-8_45", 
      "https://app.dimensions.ai/details/publication/pub.1006546872"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-20T07:43", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_185.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/3-540-46043-8_45"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-540-46043-8_45'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-540-46043-8_45'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-540-46043-8_45'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-540-46043-8_45'


 

This table displays all metadata directly associated to this object as RDF triples.

161 TRIPLES      23 PREDICATES      86 URIs      78 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/3-540-46043-8_45 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 anzsrc-for:0806
4 schema:author N9bd2abbbe4e64c0f817d3c205ff4f458
5 schema:datePublished 2002-04-10
6 schema:datePublishedReg 2002-04-10
7 schema:description The Internet and World Wide Web represent an increasingly important channel for retail commerce as well as business transactions. However, there are almost 5 billion pages or sites on the Internet and WWW. There lacks an integrated mediator business agent which is around the internet to connect between suppliers and users. Therefore, an intelligent business broking agent between supply and demand is needed for using and sharing the information efficiently and effectively. In this paper we proposed a new business agent architecture. The Business Spy Agent (BSA) captures the supply and demand information from e-commence sites automatically. Supply and Demand Analysis Mechanism (SDAM) uses NLP technologies to extract product and trading information. Domain ontology is used to classify between supply and demand and to divide them into subsets. A benefit model is proposed to handle the pairing between sub-supply and sub-demand. And a divide-and-conquer algorithm is proposed to handle the whole matching between supply and demand. In the negotiation process, the architecture uses NLP and template to produce negotiation text to handle negotiation through mail. Finally, Hidden Business Mining Mechanism (HBMM) adopts data mining technology to achieve hidden business mining. The architecture covers the four process of buying behavior including support and need identification, Product brokering, Merchant brokering, Negotiation.
8 schema:editor N4151768c116f4989bd5bb33b408ec4ba
9 schema:genre chapter
10 schema:inLanguage en
11 schema:isAccessibleForFree true
12 schema:isPartOf N88fa385059824270ab8310e87e17158f
13 schema:keywords Internet
14 NLP
15 NLP technology
16 Web
17 Wide Web
18 World Wide Web
19 agent architecture
20 agents
21 algorithm
22 analysis mechanism
23 architecture
24 behavior
25 benefit model
26 brokering
27 business
28 business agents
29 business transactions
30 channels
31 commerce
32 conquer algorithm
33 data mining technology
34 demand
35 demand information
36 divide
37 domain ontology
38 identification
39 important channel
40 information
41 intelligent business
42 mail
43 matching
44 mechanism
45 merchant brokering
46 mining
47 mining mechanism
48 mining technology
49 model
50 negotiation process
51 negotiation text
52 negotiations
53 ontology
54 pages
55 pairing
56 paper
57 process
58 product brokering
59 products
60 retail commerce
61 sites
62 subset
63 suppliers
64 supply
65 support
66 technology
67 text
68 trading information
69 transactions
70 users
71 whole matching
72 www
73 schema:name Business Agent
74 schema:pagination 449-457
75 schema:productId N7413da7b454c463b86175c9abbd376f7
76 N92721d24a24d45e29c810ed8515fb28e
77 schema:publisher N45549a0eee904500965f0d55ef2bdb0b
78 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006546872
79 https://doi.org/10.1007/3-540-46043-8_45
80 schema:sdDatePublished 2022-05-20T07:43
81 schema:sdLicense https://scigraph.springernature.com/explorer/license/
82 schema:sdPublisher N4a08ea9a27054ee9818fe64b5658303d
83 schema:url https://doi.org/10.1007/3-540-46043-8_45
84 sgo:license sg:explorer/license/
85 sgo:sdDataset chapters
86 rdf:type schema:Chapter
87 N026cf236f52d48f2990c6ca4838569d9 rdf:first N4446f3b2cd0e4781adeae77bfc14feff
88 rdf:rest Neb64d54e5cb8451e8b5aea3153480a44
89 N0455e2646ffe41898fd27b31aa765dbe schema:familyName Dongarra
90 schema:givenName Jack J.
91 rdf:type schema:Person
92 N0e1a4d85a0524a899ed6e66f6e5588b0 rdf:first sg:person.014374171260.51
93 rdf:rest N5adf61766fc94eb6b003b435ef9a28c1
94 N4151768c116f4989bd5bb33b408ec4ba rdf:first N6297ad8c6aad45269eab5885be5ce31c
95 rdf:rest Nb85b3986473644499db2ea4a3dde37ea
96 N4446f3b2cd0e4781adeae77bfc14feff schema:familyName Tan
97 schema:givenName C. J. Kenneth
98 rdf:type schema:Person
99 N45549a0eee904500965f0d55ef2bdb0b schema:name Springer Nature
100 rdf:type schema:Organisation
101 N4a08ea9a27054ee9818fe64b5658303d schema:name Springer Nature - SN SciGraph project
102 rdf:type schema:Organization
103 N5adf61766fc94eb6b003b435ef9a28c1 rdf:first N69e2c34dfc2b4790927947d319c7f3d3
104 rdf:rest Nd647f1c38a994ff2a60467bf068333eb
105 N6297ad8c6aad45269eab5885be5ce31c schema:familyName Sloot
106 schema:givenName Peter M. A.
107 rdf:type schema:Person
108 N69e2c34dfc2b4790927947d319c7f3d3 schema:affiliation grid-institutes:None
109 schema:familyName Chen
110 schema:givenName Wen-Chih
111 rdf:type schema:Person
112 N7413da7b454c463b86175c9abbd376f7 schema:name dimensions_id
113 schema:value pub.1006546872
114 rdf:type schema:PropertyValue
115 N88fa385059824270ab8310e87e17158f schema:isbn 978-3-540-43591-4
116 978-3-540-46043-5
117 schema:name Computational Science — ICCS 2002
118 rdf:type schema:Book
119 N92721d24a24d45e29c810ed8515fb28e schema:name doi
120 schema:value 10.1007/3-540-46043-8_45
121 rdf:type schema:PropertyValue
122 N9bd2abbbe4e64c0f817d3c205ff4f458 rdf:first sg:person.011526455523.38
123 rdf:rest N0e1a4d85a0524a899ed6e66f6e5588b0
124 N9efca566180f4b9c8ef0c56881e41ac2 schema:affiliation grid-institutes:None
125 schema:familyName Chang
126 schema:givenName Lu-Ping
127 rdf:type schema:Person
128 Nb85b3986473644499db2ea4a3dde37ea rdf:first Nc43542df4ae948cb921349816a6871d7
129 rdf:rest N026cf236f52d48f2990c6ca4838569d9
130 Nc43542df4ae948cb921349816a6871d7 schema:familyName Hoekstra
131 schema:givenName Alfons G.
132 rdf:type schema:Person
133 Nd647f1c38a994ff2a60467bf068333eb rdf:first N9efca566180f4b9c8ef0c56881e41ac2
134 rdf:rest rdf:nil
135 Neb64d54e5cb8451e8b5aea3153480a44 rdf:first N0455e2646ffe41898fd27b31aa765dbe
136 rdf:rest rdf:nil
137 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
138 schema:name Information and Computing Sciences
139 rdf:type schema:DefinedTerm
140 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
141 schema:name Artificial Intelligence and Image Processing
142 rdf:type schema:DefinedTerm
143 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
144 schema:name Information Systems
145 rdf:type schema:DefinedTerm
146 sg:person.011526455523.38 schema:affiliation grid-institutes:grid.260539.b
147 schema:familyName Meng
148 schema:givenName I.-Heng
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011526455523.38
150 rdf:type schema:Person
151 sg:person.014374171260.51 schema:affiliation grid-institutes:grid.260539.b
152 schema:familyName Yang
153 schema:givenName Wei-Pang
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014374171260.51
155 rdf:type schema:Person
156 grid-institutes:None schema:alternateName Advanced e-Commerce Technology Lab., Institute for Information Industry, ROC
157 schema:name Advanced e-Commerce Technology Lab., Institute for Information Industry, ROC
158 rdf:type schema:Organization
159 grid-institutes:grid.260539.b schema:alternateName Institute of Computer and Information Science, National Chiao-Tung University, Hsinchu, Taiwan, R.O.C.
160 schema:name Institute of Computer and Information Science, National Chiao-Tung University, Hsinchu, Taiwan, R.O.C.
161 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...