Cryptography in an Unbounded Computational Model View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2002-04-29

AUTHORS

David P. Woodruff , Marten van Dijk

ABSTRACT

We investigate the possibility of cryptographic primitives over nonclassical computational models. We replace the traditional finite field Fn* with the infinite field ℚ of rational numbers, and we give all parties unbounded computational power. We also give parties the ability to sample random real numbers. We determine that secure signature schemes and secure encryption schemes do not exist. We then prove more generally that it is impossible for two parties to agree upon a shared secret in this model. This rules out many other cryptographic primitives, such as Diffie-Hellman key exchange, oblivious transfer and interactive encryption. More... »

PAGES

149-164

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/3-540-46035-7_10

DOI

http://dx.doi.org/10.1007/3-540-46035-7_10

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1033505144


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computation Theory and Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0804", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Data Format", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "MIT Laboratories for Computer Science, Cambridge, USA", 
          "id": "http://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "MIT Laboratories for Computer Science, Cambridge, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Woodruff", 
        "givenName": "David P.", 
        "id": "sg:person.012727410605.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012727410605.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Philips Research Laboratories, Eindhoven, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.417284.c", 
          "name": [
            "MIT Laboratories for Computer Science, Cambridge, USA", 
            "Philips Research Laboratories, Eindhoven, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "van Dijk", 
        "givenName": "Marten", 
        "id": "sg:person.010160205302.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010160205302.42"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2002-04-29", 
    "datePublishedReg": "2002-04-29", 
    "description": "We investigate the possibility of cryptographic primitives over nonclassical computational models. We replace the traditional finite field Fn* with the infinite field \u211a of rational numbers, and we give all parties unbounded computational power. We also give parties the ability to sample random real numbers. We determine that secure signature schemes and secure encryption schemes do not exist. We then prove more generally that it is impossible for two parties to agree upon a shared secret in this model. This rules out many other cryptographic primitives, such as Diffie-Hellman key exchange, oblivious transfer and interactive encryption.", 
    "editor": [
      {
        "familyName": "Knudsen", 
        "givenName": "Lars R.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/3-540-46035-7_10", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-540-43553-2", 
        "978-3-540-46035-0"
      ], 
      "name": "Advances in Cryptology \u2014 EUROCRYPT 2002", 
      "type": "Book"
    }, 
    "keywords": [
      "cryptographic primitives", 
      "Diffie-Hellman key exchange", 
      "secure encryption scheme", 
      "secure signature scheme", 
      "encryption scheme", 
      "key exchange", 
      "computational power", 
      "computational model", 
      "signature scheme", 
      "oblivious transfer", 
      "random real numbers", 
      "primitives", 
      "infinite field", 
      "rational numbers", 
      "real numbers", 
      "encryption", 
      "cryptography", 
      "scheme", 
      "secrets", 
      "parties", 
      "model", 
      "number", 
      "field", 
      "power", 
      "exchange", 
      "ability", 
      "possibility", 
      "FN", 
      "transfer"
    ], 
    "name": "Cryptography in an Unbounded Computational Model", 
    "pagination": "149-164", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1033505144"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/3-540-46035-7_10"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/3-540-46035-7_10", 
      "https://app.dimensions.ai/details/publication/pub.1033505144"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-11-24T21:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/chapter/chapter_24.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/3-540-46035-7_10"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-540-46035-7_10'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-540-46035-7_10'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-540-46035-7_10'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-540-46035-7_10'


 

This table displays all metadata directly associated to this object as RDF triples.

103 TRIPLES      22 PREDICATES      54 URIs      46 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/3-540-46035-7_10 schema:about anzsrc-for:08
2 anzsrc-for:0802
3 anzsrc-for:0804
4 schema:author Na976f359a71f47778a4981491a1f6bf2
5 schema:datePublished 2002-04-29
6 schema:datePublishedReg 2002-04-29
7 schema:description We investigate the possibility of cryptographic primitives over nonclassical computational models. We replace the traditional finite field Fn* with the infinite field ℚ of rational numbers, and we give all parties unbounded computational power. We also give parties the ability to sample random real numbers. We determine that secure signature schemes and secure encryption schemes do not exist. We then prove more generally that it is impossible for two parties to agree upon a shared secret in this model. This rules out many other cryptographic primitives, such as Diffie-Hellman key exchange, oblivious transfer and interactive encryption.
8 schema:editor N12686284fb82429baffae71dfab4c4ba
9 schema:genre chapter
10 schema:isAccessibleForFree true
11 schema:isPartOf Nc499fde1f79e478187000cd2c218faf0
12 schema:keywords Diffie-Hellman key exchange
13 FN
14 ability
15 computational model
16 computational power
17 cryptographic primitives
18 cryptography
19 encryption
20 encryption scheme
21 exchange
22 field
23 infinite field
24 key exchange
25 model
26 number
27 oblivious transfer
28 parties
29 possibility
30 power
31 primitives
32 random real numbers
33 rational numbers
34 real numbers
35 scheme
36 secrets
37 secure encryption scheme
38 secure signature scheme
39 signature scheme
40 transfer
41 schema:name Cryptography in an Unbounded Computational Model
42 schema:pagination 149-164
43 schema:productId N614029258fe84b99b3900e5d87b5ec5c
44 Nb2d93f83fdd040dc862b5115b59ab964
45 schema:publisher Na375f3f03acf4e7cad00246088a06a6f
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033505144
47 https://doi.org/10.1007/3-540-46035-7_10
48 schema:sdDatePublished 2022-11-24T21:14
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher Ncf726119a961453298d7f8c18d3cccbb
51 schema:url https://doi.org/10.1007/3-540-46035-7_10
52 sgo:license sg:explorer/license/
53 sgo:sdDataset chapters
54 rdf:type schema:Chapter
55 N12686284fb82429baffae71dfab4c4ba rdf:first N137c4ec3739b444d907c481d7ea6b0ac
56 rdf:rest rdf:nil
57 N137c4ec3739b444d907c481d7ea6b0ac schema:familyName Knudsen
58 schema:givenName Lars R.
59 rdf:type schema:Person
60 N614029258fe84b99b3900e5d87b5ec5c schema:name doi
61 schema:value 10.1007/3-540-46035-7_10
62 rdf:type schema:PropertyValue
63 N6a643e6e8f594976ad5acf57e01cc28e rdf:first sg:person.010160205302.42
64 rdf:rest rdf:nil
65 Na375f3f03acf4e7cad00246088a06a6f schema:name Springer Nature
66 rdf:type schema:Organisation
67 Na976f359a71f47778a4981491a1f6bf2 rdf:first sg:person.012727410605.86
68 rdf:rest N6a643e6e8f594976ad5acf57e01cc28e
69 Nb2d93f83fdd040dc862b5115b59ab964 schema:name dimensions_id
70 schema:value pub.1033505144
71 rdf:type schema:PropertyValue
72 Nc499fde1f79e478187000cd2c218faf0 schema:isbn 978-3-540-43553-2
73 978-3-540-46035-0
74 schema:name Advances in Cryptology — EUROCRYPT 2002
75 rdf:type schema:Book
76 Ncf726119a961453298d7f8c18d3cccbb schema:name Springer Nature - SN SciGraph project
77 rdf:type schema:Organization
78 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
79 schema:name Information and Computing Sciences
80 rdf:type schema:DefinedTerm
81 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
82 schema:name Computation Theory and Mathematics
83 rdf:type schema:DefinedTerm
84 anzsrc-for:0804 schema:inDefinedTermSet anzsrc-for:
85 schema:name Data Format
86 rdf:type schema:DefinedTerm
87 sg:person.010160205302.42 schema:affiliation grid-institutes:grid.417284.c
88 schema:familyName van Dijk
89 schema:givenName Marten
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010160205302.42
91 rdf:type schema:Person
92 sg:person.012727410605.86 schema:affiliation grid-institutes:grid.116068.8
93 schema:familyName Woodruff
94 schema:givenName David P.
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012727410605.86
96 rdf:type schema:Person
97 grid-institutes:grid.116068.8 schema:alternateName MIT Laboratories for Computer Science, Cambridge, USA
98 schema:name MIT Laboratories for Computer Science, Cambridge, USA
99 rdf:type schema:Organization
100 grid-institutes:grid.417284.c schema:alternateName Philips Research Laboratories, Eindhoven, The Netherlands
101 schema:name MIT Laboratories for Computer Science, Cambridge, USA
102 Philips Research Laboratories, Eindhoven, The Netherlands
103 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...