Evolution Strategies, Network Random Keys, and the One-Max Tree Problem View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2002-03-14

AUTHORS

Barbara Schindler , Franz Rothlauf , Hans-Josef Pesch

ABSTRACT

Evolution strategies (ES)are efficient optimization methods for continuous problems. However, many combinatorial optimization methods can not be represented by using continuous representations. The development of the network random key representation which represents trees by using real numbers allows one to use ES for combinatorial tree problems.In this paper we apply ES to tree problems using the network random key representation. We examine whether existing recommendations regarding optimal parameter settings for ES, which were developed for the easy sphere and corridor model, are also valid for the easy one-max tree problem.The results show that the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \frac{1} {5} $$\end{document}-success rule for the (1+1)-ES results in low performance because the standard deviation is continuously reduced and we get early convergence. However, for the (μ+λ)-ES and the (μ, λ)-ES the recommendations from the literature are confirmed for the parameters of mutation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \tau _1 $$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \tau _2 $$\end{document} and the ratio μ/λ. This paper illustrates how existing theory about ES is helpful in finding good parameter settings for new problems like the one-max tree problem. More... »

PAGES

143-152

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/3-540-46004-7_15

DOI

http://dx.doi.org/10.1007/3-540-46004-7_15

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1022148955


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Information Systems, University of Bayreuth, Germany", 
          "id": "http://www.grid.ac/institutes/grid.7384.8", 
          "name": [
            "Department of Information Systems, University of Bayreuth, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schindler", 
        "givenName": "Barbara", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Information Systems, University of Bayreuth, Germany", 
          "id": "http://www.grid.ac/institutes/grid.7384.8", 
          "name": [
            "Department of Information Systems, University of Bayreuth, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rothlauf", 
        "givenName": "Franz", 
        "id": "sg:person.010352535731.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010352535731.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Applied Mathematics, University of Bayreuth, Germany", 
          "id": "http://www.grid.ac/institutes/grid.7384.8", 
          "name": [
            "Department of Applied Mathematics, University of Bayreuth, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pesch", 
        "givenName": "Hans-Josef", 
        "id": "sg:person.014543723551.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014543723551.22"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2002-03-14", 
    "datePublishedReg": "2002-03-14", 
    "description": "Evolution strategies (ES)are efficient optimization methods for continuous problems. However, many combinatorial optimization methods can not be represented by using continuous representations. The development of the network random key representation which represents trees by using real numbers allows one to use ES for combinatorial tree problems.In this paper we apply ES to tree problems using the network random key representation. We examine whether existing recommendations regarding optimal parameter settings for ES, which were developed for the easy sphere and corridor model, are also valid for the easy one-max tree problem.The results show that the \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\n\\frac{1}\n{5}\n$$\\end{document}-success rule for the (1+1)-ES results in low performance because the standard deviation is continuously reduced and we get early convergence. However, for the (\u03bc+\u03bb)-ES and the (\u03bc, \u03bb)-ES the recommendations from the literature are confirmed for the parameters of mutation \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\n\\tau _1 \n$$\\end{document} and \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\n\\tau _2 \n$$\\end{document} and the ratio \u03bc/\u03bb. This paper illustrates how existing theory about ES is helpful in finding good parameter settings for new problems like the one-max tree problem.", 
    "editor": [
      {
        "familyName": "Cagnoni", 
        "givenName": "Stefano", 
        "type": "Person"
      }, 
      {
        "familyName": "Gottlieb", 
        "givenName": "Jens", 
        "type": "Person"
      }, 
      {
        "familyName": "Hart", 
        "givenName": "Emma", 
        "type": "Person"
      }, 
      {
        "familyName": "Middendorf", 
        "givenName": "Martin", 
        "type": "Person"
      }, 
      {
        "familyName": "Raidl", 
        "givenName": "G\u00fcnther R.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/3-540-46004-7_15", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-43432-0", 
        "978-3-540-46004-6"
      ], 
      "name": "Applications of Evolutionary Computing", 
      "type": "Book"
    }, 
    "keywords": [
      "random key representation", 
      "optimization method", 
      "tree problem", 
      "key representation", 
      "combinatorial optimization method", 
      "efficient optimization method", 
      "evolution strategy", 
      "parameters of mutation", 
      "continuous problem", 
      "parameter settings", 
      "network random keys", 
      "best parameter settings", 
      "success rule", 
      "real numbers", 
      "optimal parameter settings", 
      "continuous representation", 
      "early convergence", 
      "random key", 
      "problem", 
      "representation", 
      "corridor model", 
      "new problems", 
      "convergence", 
      "theory", 
      "parameters", 
      "standard deviation", 
      "model", 
      "sphere", 
      "results", 
      "deviation", 
      "rules", 
      "number", 
      "performance", 
      "E results", 
      "ES", 
      "trees", 
      "literature", 
      "setting", 
      "strategies", 
      "low performance", 
      "key", 
      "development", 
      "recommendations", 
      "mutations", 
      "paper", 
      "method"
    ], 
    "name": "Evolution Strategies, Network Random Keys, and the One-Max Tree Problem", 
    "pagination": "143-152", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1022148955"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/3-540-46004-7_15"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/3-540-46004-7_15", 
      "https://app.dimensions.ai/details/publication/pub.1022148955"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-09-02T16:13", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/chapter/chapter_293.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/3-540-46004-7_15"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-540-46004-7_15'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-540-46004-7_15'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-540-46004-7_15'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-540-46004-7_15'


 

This table displays all metadata directly associated to this object as RDF triples.

140 TRIPLES      22 PREDICATES      70 URIs      63 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/3-540-46004-7_15 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author N935c7f7448c74dc98fbb7428433a255e
4 schema:datePublished 2002-03-14
5 schema:datePublishedReg 2002-03-14
6 schema:description Evolution strategies (ES)are efficient optimization methods for continuous problems. However, many combinatorial optimization methods can not be represented by using continuous representations. The development of the network random key representation which represents trees by using real numbers allows one to use ES for combinatorial tree problems.In this paper we apply ES to tree problems using the network random key representation. We examine whether existing recommendations regarding optimal parameter settings for ES, which were developed for the easy sphere and corridor model, are also valid for the easy one-max tree problem.The results show that the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \frac{1} {5} $$\end{document}-success rule for the (1+1)-ES results in low performance because the standard deviation is continuously reduced and we get early convergence. However, for the (μ+λ)-ES and the (μ, λ)-ES the recommendations from the literature are confirmed for the parameters of mutation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \tau _1 $$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \tau _2 $$\end{document} and the ratio μ/λ. This paper illustrates how existing theory about ES is helpful in finding good parameter settings for new problems like the one-max tree problem.
7 schema:editor N4f02c7721a3e4f48a773c5967b77d68f
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf N3a0c06c02ebf4714bf3fe274d4082c2d
11 schema:keywords E results
12 ES
13 best parameter settings
14 combinatorial optimization method
15 continuous problem
16 continuous representation
17 convergence
18 corridor model
19 development
20 deviation
21 early convergence
22 efficient optimization method
23 evolution strategy
24 key
25 key representation
26 literature
27 low performance
28 method
29 model
30 mutations
31 network random keys
32 new problems
33 number
34 optimal parameter settings
35 optimization method
36 paper
37 parameter settings
38 parameters
39 parameters of mutation
40 performance
41 problem
42 random key
43 random key representation
44 real numbers
45 recommendations
46 representation
47 results
48 rules
49 setting
50 sphere
51 standard deviation
52 strategies
53 success rule
54 theory
55 tree problem
56 trees
57 schema:name Evolution Strategies, Network Random Keys, and the One-Max Tree Problem
58 schema:pagination 143-152
59 schema:productId N9d5124e5e9674b2db9fa6d6445e6750a
60 Nfd44a53815044e5286805338f7bb74e3
61 schema:publisher N7ff6439469f94cf0924d5901a0e7b78b
62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022148955
63 https://doi.org/10.1007/3-540-46004-7_15
64 schema:sdDatePublished 2022-09-02T16:13
65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
66 schema:sdPublisher N6e0eb3d6769041b58912abe95365e181
67 schema:url https://doi.org/10.1007/3-540-46004-7_15
68 sgo:license sg:explorer/license/
69 sgo:sdDataset chapters
70 rdf:type schema:Chapter
71 N2ac30bf7ce5a4b318adeaf651d84e4a3 rdf:first sg:person.014543723551.22
72 rdf:rest rdf:nil
73 N3a0c06c02ebf4714bf3fe274d4082c2d schema:isbn 978-3-540-43432-0
74 978-3-540-46004-6
75 schema:name Applications of Evolutionary Computing
76 rdf:type schema:Book
77 N4f02c7721a3e4f48a773c5967b77d68f rdf:first Ncca6bccf44724cb2b431bd17cc79e7cf
78 rdf:rest Nc8dd57367f3a436e8c9c591a1352f7fd
79 N6e0eb3d6769041b58912abe95365e181 schema:name Springer Nature - SN SciGraph project
80 rdf:type schema:Organization
81 N75dc5fe6ed9c487593a0f061ca5ad221 rdf:first sg:person.010352535731.29
82 rdf:rest N2ac30bf7ce5a4b318adeaf651d84e4a3
83 N7972900986804fbbb5c1c7ac793fbca9 schema:familyName Raidl
84 schema:givenName Günther R.
85 rdf:type schema:Person
86 N7c20083272b84aff82d32d59968ad360 schema:affiliation grid-institutes:grid.7384.8
87 schema:familyName Schindler
88 schema:givenName Barbara
89 rdf:type schema:Person
90 N7ff6439469f94cf0924d5901a0e7b78b schema:name Springer Nature
91 rdf:type schema:Organisation
92 N935c7f7448c74dc98fbb7428433a255e rdf:first N7c20083272b84aff82d32d59968ad360
93 rdf:rest N75dc5fe6ed9c487593a0f061ca5ad221
94 N979ae3c2d2ea48798e78ce34a22e69d3 rdf:first N7972900986804fbbb5c1c7ac793fbca9
95 rdf:rest rdf:nil
96 N9d5124e5e9674b2db9fa6d6445e6750a schema:name dimensions_id
97 schema:value pub.1022148955
98 rdf:type schema:PropertyValue
99 Nb58ff059c73442e0ba8a6fe0be8b553c schema:familyName Gottlieb
100 schema:givenName Jens
101 rdf:type schema:Person
102 Nc8dd57367f3a436e8c9c591a1352f7fd rdf:first Nb58ff059c73442e0ba8a6fe0be8b553c
103 rdf:rest Nde5ad7cdcadc4f9381f3aea06da8b972
104 Ncca6bccf44724cb2b431bd17cc79e7cf schema:familyName Cagnoni
105 schema:givenName Stefano
106 rdf:type schema:Person
107 Nd2bf0340f89e46c89eb5f9aa2f178097 schema:familyName Hart
108 schema:givenName Emma
109 rdf:type schema:Person
110 Nde5ad7cdcadc4f9381f3aea06da8b972 rdf:first Nd2bf0340f89e46c89eb5f9aa2f178097
111 rdf:rest Ne097e1ca5ccf444c94704801d09fcb85
112 Ne097e1ca5ccf444c94704801d09fcb85 rdf:first Nff333cd483d544d5be05b4745260a10e
113 rdf:rest N979ae3c2d2ea48798e78ce34a22e69d3
114 Nfd44a53815044e5286805338f7bb74e3 schema:name doi
115 schema:value 10.1007/3-540-46004-7_15
116 rdf:type schema:PropertyValue
117 Nff333cd483d544d5be05b4745260a10e schema:familyName Middendorf
118 schema:givenName Martin
119 rdf:type schema:Person
120 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
121 schema:name Mathematical Sciences
122 rdf:type schema:DefinedTerm
123 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
124 schema:name Numerical and Computational Mathematics
125 rdf:type schema:DefinedTerm
126 sg:person.010352535731.29 schema:affiliation grid-institutes:grid.7384.8
127 schema:familyName Rothlauf
128 schema:givenName Franz
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010352535731.29
130 rdf:type schema:Person
131 sg:person.014543723551.22 schema:affiliation grid-institutes:grid.7384.8
132 schema:familyName Pesch
133 schema:givenName Hans-Josef
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014543723551.22
135 rdf:type schema:Person
136 grid-institutes:grid.7384.8 schema:alternateName Department of Applied Mathematics, University of Bayreuth, Germany
137 Department of Information Systems, University of Bayreuth, Germany
138 schema:name Department of Applied Mathematics, University of Bayreuth, Germany
139 Department of Information Systems, University of Bayreuth, Germany
140 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...