On the Spanning Ratio of Gabriel Graphs and β-skeletons View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2002

AUTHORS

Prosenjit Bose , Luc Devroye , William Evans , David Kirkpatrick

ABSTRACT

The spanning ratio of a graph defined on n points in the Euclidean plane is the maximal ratio over all pairs of data points (u, v), of the minimum graph distance between u and v, over the Euclidean distance between u and v. A connected graph is said to be a k-spanner if the spanning ratio does not exceed k. For example, for any k, there exists a point set whose minimum spanning tree is not a k-spanner. At the other end of the spectrum, a Delaunay triangulation is guaranteed to be a 2.42- spanner[11]. For proximity graphs inbetween these two extremes, such as Gabriel graphs[8], relative neighborhood graphs[16] and β-skeletons[12] with β ∈ [0, 2] some interesting questions arise. We show that the spanning ratio for Gabriel graphs (which are β-skeletons with β = 1) is Θ(√n) in the worst case. For all β-skeletons with β ∈ [0, 1], we prove that the spanning ratio is at most O(n λ) where λ = (1 - log2(1 +√1 - β2))/2. For all β-skeletons with β ∈ [1, 2), we prove that there exist point sets whose spanning ratio is at least (1 2 - o(1))√n. For relative neighborhood graphs[16] (skeletons with β = 2), we show that there exist point sets where the spanning ratio is ω(n). For points drawn independently from the uniform distribution on the unit square, we show that the spanning ratio of the (random) Gabriel graph and all β-skeletons with β ∈ [1, 2] tends to ∞ in probability as √log n/ log log n. More... »

PAGES

479-493

References to SciGraph publications

Book

TITLE

LATIN 2002: Theoretical Informatics

ISBN

978-3-540-43400-9
978-3-540-45995-8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/3-540-45995-2_42

DOI

http://dx.doi.org/10.1007/3-540-45995-2_42

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1048781642


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Carleton University", 
          "id": "https://www.grid.ac/institutes/grid.34428.39", 
          "name": [
            "School of Computer Science, Carleton University, Ottawa, Ontario, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bose", 
        "givenName": "Prosenjit", 
        "id": "sg:person.015631132513.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015631132513.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "McGill University", 
          "id": "https://www.grid.ac/institutes/grid.14709.3b", 
          "name": [
            "School of Computer Science, McGill University, Montreal, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Devroye", 
        "givenName": "Luc", 
        "id": "sg:person.013127445427.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013127445427.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of British Columbia", 
          "id": "https://www.grid.ac/institutes/grid.17091.3e", 
          "name": [
            "Department of Computer Science, University of British Columbia, Vancouver, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Evans", 
        "givenName": "William", 
        "id": "sg:person.016241423017.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016241423017.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of British Columbia", 
          "id": "https://www.grid.ac/institutes/grid.17091.3e", 
          "name": [
            "Department of Computer Science, University of British Columbia, Vancouver, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kirkpatrick", 
        "givenName": "David", 
        "id": "sg:person.012263077035.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012263077035.22"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02187801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006904850", 
          "https://doi.org/10.1007/bf02187801"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02187801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006904850", 
          "https://doi.org/10.1007/bf02187801"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-0000(89)90044-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010096427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1021021236", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-1098-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021021236", 
          "https://doi.org/10.1007/978-1-4612-1098-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-1098-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021021236", 
          "https://doi.org/10.1007/978-1-4612-1098-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0031-3203(80)90066-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025755637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0031-3203(80)90066-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025755637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-0-444-87806-9.50013-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027525264"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02187821", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035687870", 
          "https://doi.org/10.1007/bf02187821"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02187821", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035687870", 
          "https://doi.org/10.1007/bf02187821"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-51542-9_6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038955913", 
          "https://doi.org/10.1007/3-540-51542-9_6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0898-1221(88)90071-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049282373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0898-1221(88)90071-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049282373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1538-4632.1980.tb00031.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050719753"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1538-4632.1980.tb00031.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050719753"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2412323", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069920775"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109703686", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-349-03521-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109703686", 
          "https://doi.org/10.1007/978-1-349-03521-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-349-03521-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109703686", 
          "https://doi.org/10.1007/978-1-349-03521-2"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2002", 
    "datePublishedReg": "2002-01-01", 
    "description": "The spanning ratio of a graph defined on n points in the Euclidean plane is the maximal ratio over all pairs of data points (u, v), of the minimum graph distance between u and v, over the Euclidean distance between u and v. A connected graph is said to be a k-spanner if the spanning ratio does not exceed k. For example, for any k, there exists a point set whose minimum spanning tree is not a k-spanner. At the other end of the spectrum, a Delaunay triangulation is guaranteed to be a 2.42- spanner[11]. For proximity graphs inbetween these two extremes, such as Gabriel graphs[8], relative neighborhood graphs[16] and \u03b2-skeletons[12] with \u03b2 \u2208 [0, 2] some interesting questions arise. We show that the spanning ratio for Gabriel graphs (which are \u03b2-skeletons with \u03b2 = 1) is \u0398(\u221an) in the worst case. For all \u03b2-skeletons with \u03b2 \u2208 [0, 1], we prove that the spanning ratio is at most O(n \u03bb) where \u03bb = (1 - log2(1 +\u221a1 - \u03b22))/2. For all \u03b2-skeletons with \u03b2 \u2208 [1, 2), we prove that there exist point sets whose spanning ratio is at least (1 2 - o(1))\u221an. For relative neighborhood graphs[16] (skeletons with \u03b2 = 2), we show that there exist point sets where the spanning ratio is \u03c9(n). For points drawn independently from the uniform distribution on the unit square, we show that the spanning ratio of the (random) Gabriel graph and all \u03b2-skeletons with \u03b2 \u2208 [1, 2] tends to \u221e in probability as \u221alog n/ log log n.", 
    "editor": [
      {
        "familyName": "Rajsbaum", 
        "givenName": "Sergio", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/3-540-45995-2_42", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-540-43400-9", 
        "978-3-540-45995-8"
      ], 
      "name": "LATIN 2002: Theoretical Informatics", 
      "type": "Book"
    }, 
    "name": "On the Spanning Ratio of Gabriel Graphs and \u03b2-skeletons", 
    "pagination": "479-493", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/3-540-45995-2_42"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e862ea8ae734d8be7abbfaeb72308d124db3a022d23348a2f5449988c67bd6bf"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1048781642"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/3-540-45995-2_42", 
      "https://app.dimensions.ai/details/publication/pub.1048781642"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T11:13", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000594.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/3-540-45995-2_42"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-540-45995-2_42'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-540-45995-2_42'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-540-45995-2_42'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-540-45995-2_42'


 

This table displays all metadata directly associated to this object as RDF triples.

134 TRIPLES      23 PREDICATES      40 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/3-540-45995-2_42 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author Nd506c92c2f3449d3b3af5568ee6ddc7f
4 schema:citation sg:pub.10.1007/3-540-51542-9_6
5 sg:pub.10.1007/978-1-349-03521-2
6 sg:pub.10.1007/978-1-4612-1098-6
7 sg:pub.10.1007/bf02187801
8 sg:pub.10.1007/bf02187821
9 https://app.dimensions.ai/details/publication/pub.1021021236
10 https://app.dimensions.ai/details/publication/pub.1109703686
11 https://doi.org/10.1016/0022-0000(89)90044-5
12 https://doi.org/10.1016/0031-3203(80)90066-7
13 https://doi.org/10.1016/0898-1221(88)90071-5
14 https://doi.org/10.1016/b978-0-444-87806-9.50013-x
15 https://doi.org/10.1111/j.1538-4632.1980.tb00031.x
16 https://doi.org/10.2307/2412323
17 schema:datePublished 2002
18 schema:datePublishedReg 2002-01-01
19 schema:description The spanning ratio of a graph defined on n points in the Euclidean plane is the maximal ratio over all pairs of data points (u, v), of the minimum graph distance between u and v, over the Euclidean distance between u and v. A connected graph is said to be a k-spanner if the spanning ratio does not exceed k. For example, for any k, there exists a point set whose minimum spanning tree is not a k-spanner. At the other end of the spectrum, a Delaunay triangulation is guaranteed to be a 2.42- spanner[11]. For proximity graphs inbetween these two extremes, such as Gabriel graphs[8], relative neighborhood graphs[16] and β-skeletons[12] with β ∈ [0, 2] some interesting questions arise. We show that the spanning ratio for Gabriel graphs (which are β-skeletons with β = 1) is Θ(√n) in the worst case. For all β-skeletons with β ∈ [0, 1], we prove that the spanning ratio is at most O(n λ) where λ = (1 - log2(1 +√1 - β2))/2. For all β-skeletons with β ∈ [1, 2), we prove that there exist point sets whose spanning ratio is at least (1 2 - o(1))√n. For relative neighborhood graphs[16] (skeletons with β = 2), we show that there exist point sets where the spanning ratio is ω(n). For points drawn independently from the uniform distribution on the unit square, we show that the spanning ratio of the (random) Gabriel graph and all β-skeletons with β ∈ [1, 2] tends to ∞ in probability as √log n/ log log n.
20 schema:editor N114c04c60473415b89f1b58991380cd1
21 schema:genre chapter
22 schema:inLanguage en
23 schema:isAccessibleForFree true
24 schema:isPartOf N59351173da89444fb1f78ea045cb4003
25 schema:name On the Spanning Ratio of Gabriel Graphs and β-skeletons
26 schema:pagination 479-493
27 schema:productId N060c4a6d1d3d4440b05c080a85becc8f
28 N3bb75ade355f496f84c53828fb18bd11
29 N847dc911616d4fd1aba1853953cbb4ba
30 schema:publisher N21fb8bd6208e41e7826e72873508525c
31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048781642
32 https://doi.org/10.1007/3-540-45995-2_42
33 schema:sdDatePublished 2019-04-15T11:13
34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
35 schema:sdPublisher Nb218342abbc34e099b983b3c8cc7b370
36 schema:url http://link.springer.com/10.1007/3-540-45995-2_42
37 sgo:license sg:explorer/license/
38 sgo:sdDataset chapters
39 rdf:type schema:Chapter
40 N060c4a6d1d3d4440b05c080a85becc8f schema:name readcube_id
41 schema:value e862ea8ae734d8be7abbfaeb72308d124db3a022d23348a2f5449988c67bd6bf
42 rdf:type schema:PropertyValue
43 N114c04c60473415b89f1b58991380cd1 rdf:first N9175ecc1e9174d8fa6b30ed543092058
44 rdf:rest rdf:nil
45 N21fb8bd6208e41e7826e72873508525c schema:location Berlin, Heidelberg
46 schema:name Springer Berlin Heidelberg
47 rdf:type schema:Organisation
48 N3bb75ade355f496f84c53828fb18bd11 schema:name dimensions_id
49 schema:value pub.1048781642
50 rdf:type schema:PropertyValue
51 N59351173da89444fb1f78ea045cb4003 schema:isbn 978-3-540-43400-9
52 978-3-540-45995-8
53 schema:name LATIN 2002: Theoretical Informatics
54 rdf:type schema:Book
55 N847dc911616d4fd1aba1853953cbb4ba schema:name doi
56 schema:value 10.1007/3-540-45995-2_42
57 rdf:type schema:PropertyValue
58 N9175ecc1e9174d8fa6b30ed543092058 schema:familyName Rajsbaum
59 schema:givenName Sergio
60 rdf:type schema:Person
61 Nb218342abbc34e099b983b3c8cc7b370 schema:name Springer Nature - SN SciGraph project
62 rdf:type schema:Organization
63 Nc691519cb8574ebcbc01cb7229f97cbe rdf:first sg:person.016241423017.59
64 rdf:rest Ne444ab7e10b94e9198e9285ab7ebec22
65 Nd506c92c2f3449d3b3af5568ee6ddc7f rdf:first sg:person.015631132513.15
66 rdf:rest Nf8dd7214211c4c34a60b80611912c430
67 Ne444ab7e10b94e9198e9285ab7ebec22 rdf:first sg:person.012263077035.22
68 rdf:rest rdf:nil
69 Nf8dd7214211c4c34a60b80611912c430 rdf:first sg:person.013127445427.94
70 rdf:rest Nc691519cb8574ebcbc01cb7229f97cbe
71 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
72 schema:name Information and Computing Sciences
73 rdf:type schema:DefinedTerm
74 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
75 schema:name Information Systems
76 rdf:type schema:DefinedTerm
77 sg:person.012263077035.22 schema:affiliation https://www.grid.ac/institutes/grid.17091.3e
78 schema:familyName Kirkpatrick
79 schema:givenName David
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012263077035.22
81 rdf:type schema:Person
82 sg:person.013127445427.94 schema:affiliation https://www.grid.ac/institutes/grid.14709.3b
83 schema:familyName Devroye
84 schema:givenName Luc
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013127445427.94
86 rdf:type schema:Person
87 sg:person.015631132513.15 schema:affiliation https://www.grid.ac/institutes/grid.34428.39
88 schema:familyName Bose
89 schema:givenName Prosenjit
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015631132513.15
91 rdf:type schema:Person
92 sg:person.016241423017.59 schema:affiliation https://www.grid.ac/institutes/grid.17091.3e
93 schema:familyName Evans
94 schema:givenName William
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016241423017.59
96 rdf:type schema:Person
97 sg:pub.10.1007/3-540-51542-9_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038955913
98 https://doi.org/10.1007/3-540-51542-9_6
99 rdf:type schema:CreativeWork
100 sg:pub.10.1007/978-1-349-03521-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109703686
101 https://doi.org/10.1007/978-1-349-03521-2
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/978-1-4612-1098-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021021236
104 https://doi.org/10.1007/978-1-4612-1098-6
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/bf02187801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006904850
107 https://doi.org/10.1007/bf02187801
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/bf02187821 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035687870
110 https://doi.org/10.1007/bf02187821
111 rdf:type schema:CreativeWork
112 https://app.dimensions.ai/details/publication/pub.1021021236 schema:CreativeWork
113 https://app.dimensions.ai/details/publication/pub.1109703686 schema:CreativeWork
114 https://doi.org/10.1016/0022-0000(89)90044-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010096427
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/0031-3203(80)90066-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025755637
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/0898-1221(88)90071-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049282373
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/b978-0-444-87806-9.50013-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1027525264
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1111/j.1538-4632.1980.tb00031.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1050719753
123 rdf:type schema:CreativeWork
124 https://doi.org/10.2307/2412323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069920775
125 rdf:type schema:CreativeWork
126 https://www.grid.ac/institutes/grid.14709.3b schema:alternateName McGill University
127 schema:name School of Computer Science, McGill University, Montreal, Canada
128 rdf:type schema:Organization
129 https://www.grid.ac/institutes/grid.17091.3e schema:alternateName University of British Columbia
130 schema:name Department of Computer Science, University of British Columbia, Vancouver, Canada
131 rdf:type schema:Organization
132 https://www.grid.ac/institutes/grid.34428.39 schema:alternateName Carleton University
133 schema:name School of Computer Science, Carleton University, Ottawa, Ontario, Canada
134 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...