Jump Time and Passage Time: The Duration of a Quantum Transition View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2002

AUTHORS

Lawrence S. Schulman

ABSTRACT

It is ironic that experimentally time is the most accurately measured physical quantity, while in quantum mechanics one must struggle to provide a definition of so practical a concept as time of arrival. Historically, one of the first temporal quantities analyzed in quantum mechanics was lifetime, a property of an unstable state. The theory of this quantity is satisfactory in two ways. First, with only the smallest of white lies, one predicts exponential decay, and generally this is what one sees. Second, at the quantitative level, one finds good agreement with a simply derived formula, the Fermi-Dirac Golden rule, Γ = 2π/ħρ(E)|〈f|H|i|2. (4.1) Equation (4.1) uses standard notation. Γ is the transition rate from an initial (unstable) state |i〉 to a final state |f〉. The transition occurs by means of a Hamiltonian H. The density of (final) states is ρ, evaluated at the (common) energy of the states |i〉 and |f〉. In terms of Γ, the lifetime is τL = 1/Γ More... »

PAGES

99-120

References to SciGraph publications

Book

TITLE

Time in Quantum Mechanics

ISBN

978-3-540-43294-4

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/3-540-45846-8_4

DOI

http://dx.doi.org/10.1007/3-540-45846-8_4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1046464084


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Quantum Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Clarkson University", 
          "id": "https://www.grid.ac/institutes/grid.254280.9", 
          "name": [
            "Physics Department, Clarkson University, Potsdam, NY\u00a013699-5820, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schulman", 
        "givenName": "Lawrence S.", 
        "id": "sg:person.010275521604.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010275521604.97"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/387466a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000502213", 
          "https://doi.org/10.1038/387466a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(83)90292-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004742527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(83)90292-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004742527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0003-4916(84)90070-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006962301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.86.2699", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009917903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.86.2699", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009917903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.62.023804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015609930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.62.023804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015609930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.57.1699", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021583644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.57.1699", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021583644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02819419", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023938845", 
          "https://doi.org/10.1007/bf02819419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02819419", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023938845", 
          "https://doi.org/10.1007/bf02819419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(89)90811-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027095856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(89)90811-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027095856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01127734", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027209651", 
          "https://doi.org/10.1007/bf01127734"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01127734", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027209651", 
          "https://doi.org/10.1007/bf01127734"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00726936", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033553519", 
          "https://doi.org/10.1007/bf00726936"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00726936", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033553519", 
          "https://doi.org/10.1007/bf00726936"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.70.101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035281190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.70.101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035281190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35014537", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038063839", 
          "https://doi.org/10.1038/35014537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35014537", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038063839", 
          "https://doi.org/10.1038/35014537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(84)91063-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043762896"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(84)91063-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043762896"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0003-4916(91)90119-s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054540926"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.441373", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058019401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-8949/49/5/005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059000363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/24/9/015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059072160"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/30/9/006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059075902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.173.1461", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060439191"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.173.1461", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060439191"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.36.4604", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060476789"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.36.4604", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060476789"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.56.25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060493029"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.56.25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060493029"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.57.1509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060493473"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.57.1509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060493473"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.58.1595", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060494030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.58.1595", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060494030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.40.980", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060782875"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.40.980", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060782875"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.56.2797", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060793401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.56.2797", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060793401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.57.1696", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060793876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.57.1696", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060793876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.65.2321", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060801456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.65.2321", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060801456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.80.3491", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060817290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.80.3491", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060817290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.83.3350", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060820217"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.83.3350", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060820217"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1119/1.12204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062229298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1119/1.18410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062237760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0217979296000118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062941405"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2002", 
    "datePublishedReg": "2002-01-01", 
    "description": "It is ironic that experimentally time is the most accurately measured physical quantity, while in quantum mechanics one must struggle to provide a definition of so practical a concept as time of arrival. Historically, one of the first temporal quantities analyzed in quantum mechanics was lifetime, a property of an unstable state. The theory of this quantity is satisfactory in two ways. First, with only the smallest of white lies, one predicts exponential decay, and generally this is what one sees. Second, at the quantitative level, one finds good agreement with a simply derived formula, the Fermi-Dirac Golden rule, \u0393 = 2\u03c0/\u0127\u03c1(E)|\u3008f|H|i|2. (4.1) Equation (4.1) uses standard notation. \u0393 is the transition rate from an initial (unstable) state |i\u3009 to a final state |f\u3009. The transition occurs by means of a Hamiltonian H. The density of (final) states is \u03c1, evaluated at the (common) energy of the states |i\u3009 and |f\u3009. In terms of \u0393, the lifetime is \u03c4L = 1/\u0393", 
    "editor": [
      {
        "familyName": "Muga", 
        "givenName": "J. G.", 
        "type": "Person"
      }, 
      {
        "familyName": "Mayato", 
        "givenName": "R. Sala", 
        "type": "Person"
      }, 
      {
        "familyName": "Egusquiza", 
        "givenName": "I. L.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/3-540-45846-8_4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-540-43294-4"
      ], 
      "name": "Time in Quantum Mechanics", 
      "type": "Book"
    }, 
    "name": "Jump Time and Passage Time: The Duration of a Quantum Transition", 
    "pagination": "99-120", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/3-540-45846-8_4"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "dd561fc498608e183d361126b5a665d56ee03456f054305f0cf5aa152abc7670"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1046464084"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/3-540-45846-8_4", 
      "https://app.dimensions.ai/details/publication/pub.1046464084"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T15:23", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000272.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/3-540-45846-8_4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-540-45846-8_4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-540-45846-8_4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-540-45846-8_4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-540-45846-8_4'


 

This table displays all metadata directly associated to this object as RDF triples.

175 TRIPLES      23 PREDICATES      59 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/3-540-45846-8_4 schema:about anzsrc-for:02
2 anzsrc-for:0206
3 schema:author N4587c11adb304aadafbd3d99dec906ba
4 schema:citation sg:pub.10.1007/bf00726936
5 sg:pub.10.1007/bf01127734
6 sg:pub.10.1007/bf02819419
7 sg:pub.10.1038/35014537
8 sg:pub.10.1038/387466a0
9 https://doi.org/10.1016/0003-4916(84)90070-8
10 https://doi.org/10.1016/0003-4916(91)90119-s
11 https://doi.org/10.1016/0375-9601(83)90292-x
12 https://doi.org/10.1016/0375-9601(84)91063-6
13 https://doi.org/10.1016/0375-9601(89)90811-6
14 https://doi.org/10.1063/1.441373
15 https://doi.org/10.1088/0031-8949/49/5/005
16 https://doi.org/10.1088/0305-4470/24/9/015
17 https://doi.org/10.1088/0305-4470/30/9/006
18 https://doi.org/10.1103/physrev.173.1461
19 https://doi.org/10.1103/physreva.36.4604
20 https://doi.org/10.1103/physreva.56.25
21 https://doi.org/10.1103/physreva.57.1509
22 https://doi.org/10.1103/physreva.58.1595
23 https://doi.org/10.1103/physreva.62.023804
24 https://doi.org/10.1103/physrevlett.40.980
25 https://doi.org/10.1103/physrevlett.56.2797
26 https://doi.org/10.1103/physrevlett.57.1696
27 https://doi.org/10.1103/physrevlett.57.1699
28 https://doi.org/10.1103/physrevlett.65.2321
29 https://doi.org/10.1103/physrevlett.80.3491
30 https://doi.org/10.1103/physrevlett.83.3350
31 https://doi.org/10.1103/physrevlett.86.2699
32 https://doi.org/10.1103/revmodphys.70.101
33 https://doi.org/10.1119/1.12204
34 https://doi.org/10.1119/1.18410
35 https://doi.org/10.1142/s0217979296000118
36 schema:datePublished 2002
37 schema:datePublishedReg 2002-01-01
38 schema:description It is ironic that experimentally time is the most accurately measured physical quantity, while in quantum mechanics one must struggle to provide a definition of so practical a concept as time of arrival. Historically, one of the first temporal quantities analyzed in quantum mechanics was lifetime, a property of an unstable state. The theory of this quantity is satisfactory in two ways. First, with only the smallest of white lies, one predicts exponential decay, and generally this is what one sees. Second, at the quantitative level, one finds good agreement with a simply derived formula, the Fermi-Dirac Golden rule, Γ = 2π/ħρ(E)|〈f|H|i|2. (4.1) Equation (4.1) uses standard notation. Γ is the transition rate from an initial (unstable) state |i〉 to a final state |f〉. The transition occurs by means of a Hamiltonian H. The density of (final) states is ρ, evaluated at the (common) energy of the states |i〉 and |f〉. In terms of Γ, the lifetime is τL = 1/Γ
39 schema:editor Ndd665eae93e14697a1832721dc75bb3d
40 schema:genre chapter
41 schema:inLanguage en
42 schema:isAccessibleForFree true
43 schema:isPartOf Nbe54bf7cf97646ddbed4a22128245d68
44 schema:name Jump Time and Passage Time: The Duration of a Quantum Transition
45 schema:pagination 99-120
46 schema:productId N226292ec9e29466a9e8ad9f1eb618d8a
47 N5d928a06ae5c4e3c88ff7172fba5b885
48 Ne50b2ff4524048b2aa6b6143c3668685
49 schema:publisher Naad51f9d63044f649446a953fc3cc967
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046464084
51 https://doi.org/10.1007/3-540-45846-8_4
52 schema:sdDatePublished 2019-04-15T15:23
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher N7ef3c045b3c545b187672e5c21132509
55 schema:url http://link.springer.com/10.1007/3-540-45846-8_4
56 sgo:license sg:explorer/license/
57 sgo:sdDataset chapters
58 rdf:type schema:Chapter
59 N226292ec9e29466a9e8ad9f1eb618d8a schema:name dimensions_id
60 schema:value pub.1046464084
61 rdf:type schema:PropertyValue
62 N2439028c5fb54c83ab2abc3ef90c9822 schema:familyName Mayato
63 schema:givenName R. Sala
64 rdf:type schema:Person
65 N2e395930b5214672b2f1a003f13dae00 schema:familyName Muga
66 schema:givenName J. G.
67 rdf:type schema:Person
68 N4587c11adb304aadafbd3d99dec906ba rdf:first sg:person.010275521604.97
69 rdf:rest rdf:nil
70 N574cd1c193f246a6be235c6e77706fc7 schema:familyName Egusquiza
71 schema:givenName I. L.
72 rdf:type schema:Person
73 N5d928a06ae5c4e3c88ff7172fba5b885 schema:name doi
74 schema:value 10.1007/3-540-45846-8_4
75 rdf:type schema:PropertyValue
76 N7ef3c045b3c545b187672e5c21132509 schema:name Springer Nature - SN SciGraph project
77 rdf:type schema:Organization
78 Naad51f9d63044f649446a953fc3cc967 schema:location Berlin, Heidelberg
79 schema:name Springer Berlin Heidelberg
80 rdf:type schema:Organisation
81 Nb9307228fd2546899ae788ad4a75f739 rdf:first N574cd1c193f246a6be235c6e77706fc7
82 rdf:rest rdf:nil
83 Nbe03e3f14697431593a56a95d3ba308c rdf:first N2439028c5fb54c83ab2abc3ef90c9822
84 rdf:rest Nb9307228fd2546899ae788ad4a75f739
85 Nbe54bf7cf97646ddbed4a22128245d68 schema:isbn 978-3-540-43294-4
86 schema:name Time in Quantum Mechanics
87 rdf:type schema:Book
88 Ndd665eae93e14697a1832721dc75bb3d rdf:first N2e395930b5214672b2f1a003f13dae00
89 rdf:rest Nbe03e3f14697431593a56a95d3ba308c
90 Ne50b2ff4524048b2aa6b6143c3668685 schema:name readcube_id
91 schema:value dd561fc498608e183d361126b5a665d56ee03456f054305f0cf5aa152abc7670
92 rdf:type schema:PropertyValue
93 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
94 schema:name Physical Sciences
95 rdf:type schema:DefinedTerm
96 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
97 schema:name Quantum Physics
98 rdf:type schema:DefinedTerm
99 sg:person.010275521604.97 schema:affiliation https://www.grid.ac/institutes/grid.254280.9
100 schema:familyName Schulman
101 schema:givenName Lawrence S.
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010275521604.97
103 rdf:type schema:Person
104 sg:pub.10.1007/bf00726936 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033553519
105 https://doi.org/10.1007/bf00726936
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/bf01127734 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027209651
108 https://doi.org/10.1007/bf01127734
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/bf02819419 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023938845
111 https://doi.org/10.1007/bf02819419
112 rdf:type schema:CreativeWork
113 sg:pub.10.1038/35014537 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038063839
114 https://doi.org/10.1038/35014537
115 rdf:type schema:CreativeWork
116 sg:pub.10.1038/387466a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000502213
117 https://doi.org/10.1038/387466a0
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/0003-4916(84)90070-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006962301
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/0003-4916(91)90119-s schema:sameAs https://app.dimensions.ai/details/publication/pub.1054540926
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/0375-9601(83)90292-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1004742527
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/0375-9601(84)91063-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043762896
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/0375-9601(89)90811-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027095856
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1063/1.441373 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058019401
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1088/0031-8949/49/5/005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059000363
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1088/0305-4470/24/9/015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059072160
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1088/0305-4470/30/9/006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059075902
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1103/physrev.173.1461 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060439191
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1103/physreva.36.4604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060476789
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1103/physreva.56.25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060493029
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1103/physreva.57.1509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060493473
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1103/physreva.58.1595 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060494030
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1103/physreva.62.023804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015609930
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1103/physrevlett.40.980 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060782875
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1103/physrevlett.56.2797 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060793401
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1103/physrevlett.57.1696 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060793876
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1103/physrevlett.57.1699 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021583644
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1103/physrevlett.65.2321 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060801456
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1103/physrevlett.80.3491 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060817290
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1103/physrevlett.83.3350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060820217
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1103/physrevlett.86.2699 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009917903
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1103/revmodphys.70.101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035281190
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1119/1.12204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062229298
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1119/1.18410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062237760
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1142/s0217979296000118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062941405
172 rdf:type schema:CreativeWork
173 https://www.grid.ac/institutes/grid.254280.9 schema:alternateName Clarkson University
174 schema:name Physics Department, Clarkson University, Potsdam, NY 13699-5820, USA
175 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...