An Information Theoretic Approach to the Study of Genome Sequences: An Application to the Evolution of HIV View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2002-10-10

AUTHORS

Masanori Ohya

ABSTRACT

When a V3 sequence obtained on the n-th year after infection with human immunodeficiency virus type 1 (HIV-1) was supposed to change into a V3 sequence on the n+1-th year, the variation between the above two sequences was analyzed by means of entropic chaos degree. The entropic chaos degree measures chaotic aspects of the dynamics causing the variation of sequence. If it is large, then the dynamics produces the large complexity, in other words, the variation of sequences becomes large. As a results, the chaos degree for the dynamics changing the V3 region showed the specific variation patterns throughout from the early stages of infection to death. That is, the variation patterns indicated that the entropic chaos degree is useful to measure the stage of disease progression after HIV-1 infection. More... »

PAGES

50-57

References to SciGraph publications

  • 1998-01. Complexities and Their Applications to Characterization of Chaos in INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS
  • 1998-12. Analysis of HIV by entropy evolution rate in AMINO ACIDS
  • Book

    TITLE

    Unconventional Models of Computation

    ISBN

    978-3-540-44311-7
    978-3-540-45833-3

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/3-540-45833-6_5

    DOI

    http://dx.doi.org/10.1007/3-540-45833-6_5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1008672381


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1108", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical Microbiology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Tokyo University of Science", 
              "id": "https://www.grid.ac/institutes/grid.143643.7", 
              "name": [
                "Department of Information Sciences, Tokyo University of Science, 278-8510, Noda City, Chiba, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ohya", 
            "givenName": "Masanori", 
            "id": "sg:person.013365420775.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013365420775.41"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/0042-6822(91)90767-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008370026"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.95.21.12568", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020077565"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/00002030-199609000-00003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020979065"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/00002030-199609000-00003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020979065"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01318853", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021168913", 
              "https://doi.org/10.1007/bf01318853"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01318853", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021168913", 
              "https://doi.org/10.1007/bf01318853"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0960-0779(99)00050-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028540711"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.89.11.4835", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039812025"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1026620313483", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044316893", 
              "https://doi.org/10.1023/a:1026620313483"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.86.17.6768", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047230461"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1089/aid.1997.13.1597", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059224519"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/00042560-199605010-00002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060296019"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1372448", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062478161"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.7326/0003-4819-122-8-199504150-00003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1073699543"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1083193468", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1083255271", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1083315127", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2002-10-10", 
        "datePublishedReg": "2002-10-10", 
        "description": "When a V3 sequence obtained on the n-th year after infection with human immunodeficiency virus type 1 (HIV-1) was supposed to change into a V3 sequence on the n+1-th year, the variation between the above two sequences was analyzed by means of entropic chaos degree. The entropic chaos degree measures chaotic aspects of the dynamics causing the variation of sequence. If it is large, then the dynamics produces the large complexity, in other words, the variation of sequences becomes large. As a results, the chaos degree for the dynamics changing the V3 region showed the specific variation patterns throughout from the early stages of infection to death. That is, the variation patterns indicated that the entropic chaos degree is useful to measure the stage of disease progression after HIV-1 infection.", 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/3-540-45833-6_5", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-3-540-44311-7", 
            "978-3-540-45833-3"
          ], 
          "name": "Unconventional Models of Computation", 
          "type": "Book"
        }, 
        "name": "An Information Theoretic Approach to the Study of Genome Sequences: An Application to the Evolution of HIV", 
        "pagination": "50-57", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/3-540-45833-6_5"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "2951388b36cfd6961ac192ec96cecf2549b4ffa5e7a1a33fd196907836e2cf8d"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1008672381"
            ]
          }
        ], 
        "publisher": {
          "location": "Berlin, Heidelberg", 
          "name": "Springer Berlin Heidelberg", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/3-540-45833-6_5", 
          "https://app.dimensions.ai/details/publication/pub.1008672381"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-16T05:27", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000345_0000000345/records_64115_00000000.jsonl", 
        "type": "Chapter", 
        "url": "https://link.springer.com/10.1007%2F3-540-45833-6_5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-540-45833-6_5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-540-45833-6_5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-540-45833-6_5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-540-45833-6_5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    103 TRIPLES      22 PREDICATES      40 URIs      18 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/3-540-45833-6_5 schema:about anzsrc-for:11
    2 anzsrc-for:1108
    3 schema:author Nc3db16531480408285930686620aeca9
    4 schema:citation sg:pub.10.1007/bf01318853
    5 sg:pub.10.1023/a:1026620313483
    6 https://app.dimensions.ai/details/publication/pub.1083193468
    7 https://app.dimensions.ai/details/publication/pub.1083255271
    8 https://app.dimensions.ai/details/publication/pub.1083315127
    9 https://doi.org/10.1016/0042-6822(91)90767-6
    10 https://doi.org/10.1016/s0960-0779(99)00050-8
    11 https://doi.org/10.1073/pnas.86.17.6768
    12 https://doi.org/10.1073/pnas.89.11.4835
    13 https://doi.org/10.1073/pnas.95.21.12568
    14 https://doi.org/10.1089/aid.1997.13.1597
    15 https://doi.org/10.1097/00002030-199609000-00003
    16 https://doi.org/10.1097/00042560-199605010-00002
    17 https://doi.org/10.1126/science.1372448
    18 https://doi.org/10.7326/0003-4819-122-8-199504150-00003
    19 schema:datePublished 2002-10-10
    20 schema:datePublishedReg 2002-10-10
    21 schema:description When a V3 sequence obtained on the n-th year after infection with human immunodeficiency virus type 1 (HIV-1) was supposed to change into a V3 sequence on the n+1-th year, the variation between the above two sequences was analyzed by means of entropic chaos degree. The entropic chaos degree measures chaotic aspects of the dynamics causing the variation of sequence. If it is large, then the dynamics produces the large complexity, in other words, the variation of sequences becomes large. As a results, the chaos degree for the dynamics changing the V3 region showed the specific variation patterns throughout from the early stages of infection to death. That is, the variation patterns indicated that the entropic chaos degree is useful to measure the stage of disease progression after HIV-1 infection.
    22 schema:genre chapter
    23 schema:inLanguage en
    24 schema:isAccessibleForFree false
    25 schema:isPartOf N1d5836e8ccae473792805fabff3cc10a
    26 schema:name An Information Theoretic Approach to the Study of Genome Sequences: An Application to the Evolution of HIV
    27 schema:pagination 50-57
    28 schema:productId N33084a70a1704df49f28c3ae4864ea73
    29 N39ad94fecaea4dfdbb90acb228b8981f
    30 N6a90293e2f68420797f3f150ad9c8a9b
    31 schema:publisher N348fc1cb8ce3415fa60583f3a2ba99dd
    32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008672381
    33 https://doi.org/10.1007/3-540-45833-6_5
    34 schema:sdDatePublished 2019-04-16T05:27
    35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    36 schema:sdPublisher N272d57785e9e4a0cb3afe3aea11343cc
    37 schema:url https://link.springer.com/10.1007%2F3-540-45833-6_5
    38 sgo:license sg:explorer/license/
    39 sgo:sdDataset chapters
    40 rdf:type schema:Chapter
    41 N1d5836e8ccae473792805fabff3cc10a schema:isbn 978-3-540-44311-7
    42 978-3-540-45833-3
    43 schema:name Unconventional Models of Computation
    44 rdf:type schema:Book
    45 N272d57785e9e4a0cb3afe3aea11343cc schema:name Springer Nature - SN SciGraph project
    46 rdf:type schema:Organization
    47 N33084a70a1704df49f28c3ae4864ea73 schema:name doi
    48 schema:value 10.1007/3-540-45833-6_5
    49 rdf:type schema:PropertyValue
    50 N348fc1cb8ce3415fa60583f3a2ba99dd schema:location Berlin, Heidelberg
    51 schema:name Springer Berlin Heidelberg
    52 rdf:type schema:Organisation
    53 N39ad94fecaea4dfdbb90acb228b8981f schema:name readcube_id
    54 schema:value 2951388b36cfd6961ac192ec96cecf2549b4ffa5e7a1a33fd196907836e2cf8d
    55 rdf:type schema:PropertyValue
    56 N6a90293e2f68420797f3f150ad9c8a9b schema:name dimensions_id
    57 schema:value pub.1008672381
    58 rdf:type schema:PropertyValue
    59 Nc3db16531480408285930686620aeca9 rdf:first sg:person.013365420775.41
    60 rdf:rest rdf:nil
    61 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    62 schema:name Medical and Health Sciences
    63 rdf:type schema:DefinedTerm
    64 anzsrc-for:1108 schema:inDefinedTermSet anzsrc-for:
    65 schema:name Medical Microbiology
    66 rdf:type schema:DefinedTerm
    67 sg:person.013365420775.41 schema:affiliation https://www.grid.ac/institutes/grid.143643.7
    68 schema:familyName Ohya
    69 schema:givenName Masanori
    70 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013365420775.41
    71 rdf:type schema:Person
    72 sg:pub.10.1007/bf01318853 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021168913
    73 https://doi.org/10.1007/bf01318853
    74 rdf:type schema:CreativeWork
    75 sg:pub.10.1023/a:1026620313483 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044316893
    76 https://doi.org/10.1023/a:1026620313483
    77 rdf:type schema:CreativeWork
    78 https://app.dimensions.ai/details/publication/pub.1083193468 schema:CreativeWork
    79 https://app.dimensions.ai/details/publication/pub.1083255271 schema:CreativeWork
    80 https://app.dimensions.ai/details/publication/pub.1083315127 schema:CreativeWork
    81 https://doi.org/10.1016/0042-6822(91)90767-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008370026
    82 rdf:type schema:CreativeWork
    83 https://doi.org/10.1016/s0960-0779(99)00050-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028540711
    84 rdf:type schema:CreativeWork
    85 https://doi.org/10.1073/pnas.86.17.6768 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047230461
    86 rdf:type schema:CreativeWork
    87 https://doi.org/10.1073/pnas.89.11.4835 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039812025
    88 rdf:type schema:CreativeWork
    89 https://doi.org/10.1073/pnas.95.21.12568 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020077565
    90 rdf:type schema:CreativeWork
    91 https://doi.org/10.1089/aid.1997.13.1597 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059224519
    92 rdf:type schema:CreativeWork
    93 https://doi.org/10.1097/00002030-199609000-00003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020979065
    94 rdf:type schema:CreativeWork
    95 https://doi.org/10.1097/00042560-199605010-00002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060296019
    96 rdf:type schema:CreativeWork
    97 https://doi.org/10.1126/science.1372448 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062478161
    98 rdf:type schema:CreativeWork
    99 https://doi.org/10.7326/0003-4819-122-8-199504150-00003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073699543
    100 rdf:type schema:CreativeWork
    101 https://www.grid.ac/institutes/grid.143643.7 schema:alternateName Tokyo University of Science
    102 schema:name Department of Information Sciences, Tokyo University of Science, 278-8510, Noda City, Chiba, Japan
    103 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...