Real-Time Tracking of Complex Objects Using Dynamic Interpretation Tree View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2002-10-10

AUTHORS

Markus Brandner , Axel Pinz

ABSTRACT

Vision-based tracking for augmented reality (AR) applications requires highly accurate position and pose measurements at video frame rate. Typically several interaction devices have to be tracked simultaneously. While the geometry of all devices and the spatial layout of visual landmarks on the devices are well known, problems of occlusion as well as of prohibitively large search spaces remain to be solved. The main contribution of the paper is in high-level algorithms for real-time tracking. We describe a model-based tracking system which implements a dynamic extension of the structure of an interpretation tree for scene analysis. This structure is well suited to track multiple rigid objects in a dynamic environment. Independent of the class of low-level features being tracked, the algorithm is capable to handle occlusions due to a model-dependent recovery strategy. The proposed high-level algorithm has been applied to stereo-based outside-in optical tracking for AR. The results show the ability of the dynamic interpretation tree to cope with partial or full object occlusion and to deliver the required object pose parameters at a rate of 30 Hz. More... »

PAGES

9-16

References to SciGraph publications

  • 1998-08. CONDENSATION—Conditional Density Propagation for Visual Tracking in INTERNATIONAL JOURNAL OF COMPUTER VISION
  • 1992-08. Robust model-based motion tracking through the integration of search and estimation in INTERNATIONAL JOURNAL OF COMPUTER VISION
  • Book

    TITLE

    Pattern Recognition

    ISBN

    978-3-540-44209-7
    978-3-540-45783-1

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/3-540-45783-6_2

    DOI

    http://dx.doi.org/10.1007/3-540-45783-6_2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1025050277


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Graz University of Technology", 
              "id": "https://www.grid.ac/institutes/grid.410413.3", 
              "name": [
                "Institute of Electrical Measurement and Measurement Signal Processing, Graz University of Technology, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Brandner", 
            "givenName": "Markus", 
            "id": "sg:person.010101501625.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010101501625.10"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Graz University of Technology", 
              "id": "https://www.grid.ac/institutes/grid.410413.3", 
              "name": [
                "Institute of Electrical Measurement and Measurement Signal Processing, Graz University of Technology, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pinz", 
            "givenName": "Axel", 
            "id": "sg:person.012033065653.49", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012033065653.49"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1023/a:1008078328650", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012498237", 
              "https://doi.org/10.1023/a:1008078328650"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00127170", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020645337", 
              "https://doi.org/10.1007/bf00127170"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00127170", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020645337", 
              "https://doi.org/10.1007/bf00127170"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/358669.358692", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033921345"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/34.93810", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061157295"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/isar.2001.970518", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094355989"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2002-10-10", 
        "datePublishedReg": "2002-10-10", 
        "description": "Vision-based tracking for augmented reality (AR) applications requires highly accurate position and pose measurements at video frame rate. Typically several interaction devices have to be tracked simultaneously. While the geometry of all devices and the spatial layout of visual landmarks on the devices are well known, problems of occlusion as well as of prohibitively large search spaces remain to be solved. The main contribution of the paper is in high-level algorithms for real-time tracking. We describe a model-based tracking system which implements a dynamic extension of the structure of an interpretation tree for scene analysis. This structure is well suited to track multiple rigid objects in a dynamic environment. Independent of the class of low-level features being tracked, the algorithm is capable to handle occlusions due to a model-dependent recovery strategy. The proposed high-level algorithm has been applied to stereo-based outside-in optical tracking for AR. The results show the ability of the dynamic interpretation tree to cope with partial or full object occlusion and to deliver the required object pose parameters at a rate of 30 Hz.", 
        "editor": [
          {
            "familyName": "Van Gool", 
            "givenName": "Luc", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/3-540-45783-6_2", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-3-540-44209-7", 
            "978-3-540-45783-1"
          ], 
          "name": "Pattern Recognition", 
          "type": "Book"
        }, 
        "name": "Real-Time Tracking of Complex Objects Using Dynamic Interpretation Tree", 
        "pagination": "9-16", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/3-540-45783-6_2"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "7756bcfad6dd120b2d98dd4341d1c090150b609760d729d9876e3265a5abf9b4"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1025050277"
            ]
          }
        ], 
        "publisher": {
          "location": "Berlin, Heidelberg", 
          "name": "Springer Berlin Heidelberg", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/3-540-45783-6_2", 
          "https://app.dimensions.ai/details/publication/pub.1025050277"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-16T05:24", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000345_0000000345/records_64085_00000001.jsonl", 
        "type": "Chapter", 
        "url": "https://link.springer.com/10.1007%2F3-540-45783-6_2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-540-45783-6_2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-540-45783-6_2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-540-45783-6_2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-540-45783-6_2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    89 TRIPLES      23 PREDICATES      31 URIs      19 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/3-540-45783-6_2 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N23649630a2a8477698326cf2721640ea
    4 schema:citation sg:pub.10.1007/bf00127170
    5 sg:pub.10.1023/a:1008078328650
    6 https://doi.org/10.1109/34.93810
    7 https://doi.org/10.1109/isar.2001.970518
    8 https://doi.org/10.1145/358669.358692
    9 schema:datePublished 2002-10-10
    10 schema:datePublishedReg 2002-10-10
    11 schema:description Vision-based tracking for augmented reality (AR) applications requires highly accurate position and pose measurements at video frame rate. Typically several interaction devices have to be tracked simultaneously. While the geometry of all devices and the spatial layout of visual landmarks on the devices are well known, problems of occlusion as well as of prohibitively large search spaces remain to be solved. The main contribution of the paper is in high-level algorithms for real-time tracking. We describe a model-based tracking system which implements a dynamic extension of the structure of an interpretation tree for scene analysis. This structure is well suited to track multiple rigid objects in a dynamic environment. Independent of the class of low-level features being tracked, the algorithm is capable to handle occlusions due to a model-dependent recovery strategy. The proposed high-level algorithm has been applied to stereo-based outside-in optical tracking for AR. The results show the ability of the dynamic interpretation tree to cope with partial or full object occlusion and to deliver the required object pose parameters at a rate of 30 Hz.
    12 schema:editor Nc5f44102c41c4c3a824aabf632846454
    13 schema:genre chapter
    14 schema:inLanguage en
    15 schema:isAccessibleForFree false
    16 schema:isPartOf Na16838f0b77942bea9c819d1a0478030
    17 schema:name Real-Time Tracking of Complex Objects Using Dynamic Interpretation Tree
    18 schema:pagination 9-16
    19 schema:productId N229d93705e6a4d48985e61d0a3261dd4
    20 Ndbce6a9a7ee5480085863b2cd8c64697
    21 Nfd663da17da645298e18d0d6819adf64
    22 schema:publisher N4a7f96d491164ea6929c50c4285d9177
    23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025050277
    24 https://doi.org/10.1007/3-540-45783-6_2
    25 schema:sdDatePublished 2019-04-16T05:24
    26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    27 schema:sdPublisher N0ac27c3aede3486f961dad957590ab3f
    28 schema:url https://link.springer.com/10.1007%2F3-540-45783-6_2
    29 sgo:license sg:explorer/license/
    30 sgo:sdDataset chapters
    31 rdf:type schema:Chapter
    32 N0ac27c3aede3486f961dad957590ab3f schema:name Springer Nature - SN SciGraph project
    33 rdf:type schema:Organization
    34 N229d93705e6a4d48985e61d0a3261dd4 schema:name doi
    35 schema:value 10.1007/3-540-45783-6_2
    36 rdf:type schema:PropertyValue
    37 N23649630a2a8477698326cf2721640ea rdf:first sg:person.010101501625.10
    38 rdf:rest N60fd7dcfff18496eb3d4135925e144a4
    39 N4a7f96d491164ea6929c50c4285d9177 schema:location Berlin, Heidelberg
    40 schema:name Springer Berlin Heidelberg
    41 rdf:type schema:Organisation
    42 N4d1009308bdb47be95b3d8fdd05f6a64 schema:familyName Van Gool
    43 schema:givenName Luc
    44 rdf:type schema:Person
    45 N60fd7dcfff18496eb3d4135925e144a4 rdf:first sg:person.012033065653.49
    46 rdf:rest rdf:nil
    47 Na16838f0b77942bea9c819d1a0478030 schema:isbn 978-3-540-44209-7
    48 978-3-540-45783-1
    49 schema:name Pattern Recognition
    50 rdf:type schema:Book
    51 Nc5f44102c41c4c3a824aabf632846454 rdf:first N4d1009308bdb47be95b3d8fdd05f6a64
    52 rdf:rest rdf:nil
    53 Ndbce6a9a7ee5480085863b2cd8c64697 schema:name readcube_id
    54 schema:value 7756bcfad6dd120b2d98dd4341d1c090150b609760d729d9876e3265a5abf9b4
    55 rdf:type schema:PropertyValue
    56 Nfd663da17da645298e18d0d6819adf64 schema:name dimensions_id
    57 schema:value pub.1025050277
    58 rdf:type schema:PropertyValue
    59 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    60 schema:name Information and Computing Sciences
    61 rdf:type schema:DefinedTerm
    62 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    63 schema:name Artificial Intelligence and Image Processing
    64 rdf:type schema:DefinedTerm
    65 sg:person.010101501625.10 schema:affiliation https://www.grid.ac/institutes/grid.410413.3
    66 schema:familyName Brandner
    67 schema:givenName Markus
    68 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010101501625.10
    69 rdf:type schema:Person
    70 sg:person.012033065653.49 schema:affiliation https://www.grid.ac/institutes/grid.410413.3
    71 schema:familyName Pinz
    72 schema:givenName Axel
    73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012033065653.49
    74 rdf:type schema:Person
    75 sg:pub.10.1007/bf00127170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020645337
    76 https://doi.org/10.1007/bf00127170
    77 rdf:type schema:CreativeWork
    78 sg:pub.10.1023/a:1008078328650 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012498237
    79 https://doi.org/10.1023/a:1008078328650
    80 rdf:type schema:CreativeWork
    81 https://doi.org/10.1109/34.93810 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061157295
    82 rdf:type schema:CreativeWork
    83 https://doi.org/10.1109/isar.2001.970518 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094355989
    84 rdf:type schema:CreativeWork
    85 https://doi.org/10.1145/358669.358692 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033921345
    86 rdf:type schema:CreativeWork
    87 https://www.grid.ac/institutes/grid.410413.3 schema:alternateName Graz University of Technology
    88 schema:name Institute of Electrical Measurement and Measurement Signal Processing, Graz University of Technology, Austria
    89 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...