Ontology type: schema:Chapter Open Access: True
2001-06-28
AUTHORSJacques van Helden , David Gilbert , Lorenz Wernisch , Michael Schroeder , Shoshana Wodak
ABSTRACTWe present two complementary approaches for the interpretation of clusters of co-regulated genes, such as those obtained from DNA chips and related methods. Starting from a cluster of genes with similar expression profiles, two basic questions can be asked: Which mechanism is responsible for the coordinated transcriptional response of the genes? This question is approached by extracting motifs that are shared between the upstream sequences of these genes. The motifs extracted are putative cis-acting regulatory elements.What is the physiological meaning for the cell to express together these genes? One way to answer the question is to search for potential metabolic pathways that could be catalyzed by the products of the genes. This can be done by selecting the genes from the cluster that code for enzymes, and trying to assemble the catalyzed reactions to form metabolic pathways.We present tools to answer these two questions, and we illustrate their use with selected examples in the yeast Saccharomyces cerevisiae. The tools are available on the web (http://ucmb.ulb.ac.be/bioinformatics/rsa-tools/; http://www.ebi.ac.uk/research/pfbp/; http://www.soi.city.ac.uk/~msch/). More... »
PAGES147-163
Computational Biology
ISBN
978-3-540-42242-6
978-3-540-45727-5
http://scigraph.springernature.com/pub.10.1007/3-540-45727-5_13
DOIhttp://dx.doi.org/10.1007/3-540-45727-5_13
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1040453075
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Biological Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Genetics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Genome Campus -, European Bioinformatics Institute, Hinxton, CB10 1SD -, Cambridge, UK",
"id": "http://www.grid.ac/institutes/grid.225360.0",
"name": [
"SCMBB, Universit\u00e9 Libre de Bruxelles, CP160/16. 50 av F.D. Roosevelt, B-1050, Bruxelles, Belgique",
"Genome Campus -, European Bioinformatics Institute, Hinxton, CB10 1SD -, Cambridge, UK"
],
"type": "Organization"
},
"familyName": "van Helden",
"givenName": "Jacques",
"id": "sg:person.0626672543.46",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0626672543.46"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Computing, City University, Northampton Square, EC1V 0HB, London, UK",
"id": "http://www.grid.ac/institutes/grid.28577.3f",
"name": [
"Genome Campus -, European Bioinformatics Institute, Hinxton, CB10 1SD -, Cambridge, UK",
"Department of Computing, City University, Northampton Square, EC1V 0HB, London, UK"
],
"type": "Organization"
},
"familyName": "Gilbert",
"givenName": "David",
"id": "sg:person.01024373510.92",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024373510.92"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Genome Campus -, European Bioinformatics Institute, Hinxton, CB10 1SD -, Cambridge, UK",
"id": "http://www.grid.ac/institutes/grid.225360.0",
"name": [
"Genome Campus -, European Bioinformatics Institute, Hinxton, CB10 1SD -, Cambridge, UK"
],
"type": "Organization"
},
"familyName": "Wernisch",
"givenName": "Lorenz",
"id": "sg:person.01132465512.22",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01132465512.22"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Computing, City University, Northampton Square, EC1V 0HB, London, UK",
"id": "http://www.grid.ac/institutes/grid.28577.3f",
"name": [
"Department of Computing, City University, Northampton Square, EC1V 0HB, London, UK"
],
"type": "Organization"
},
"familyName": "Schroeder",
"givenName": "Michael",
"id": "sg:person.01127320076.40",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01127320076.40"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Genome Campus -, European Bioinformatics Institute, Hinxton, CB10 1SD -, Cambridge, UK",
"id": "http://www.grid.ac/institutes/grid.225360.0",
"name": [
"SCMBB, Universit\u00e9 Libre de Bruxelles, CP160/16. 50 av F.D. Roosevelt, B-1050, Bruxelles, Belgique",
"Genome Campus -, European Bioinformatics Institute, Hinxton, CB10 1SD -, Cambridge, UK"
],
"type": "Organization"
},
"familyName": "Wodak",
"givenName": "Shoshana",
"id": "sg:person.0664143231.02",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664143231.02"
],
"type": "Person"
}
],
"datePublished": "2001-06-28",
"datePublishedReg": "2001-06-28",
"description": "We present two complementary approaches for the interpretation of clusters of co-regulated genes, such as those obtained from DNA chips and related methods. Starting from a cluster of genes with similar expression profiles, two basic questions can be asked:\nWhich mechanism is responsible for the coordinated transcriptional response of the genes? This question is approached by extracting motifs that are shared between the upstream sequences of these genes. The motifs extracted are putative cis-acting regulatory elements.What is the physiological meaning for the cell to express together these genes? One way to answer the question is to search for potential metabolic pathways that could be catalyzed by the products of the genes. This can be done by selecting the genes from the cluster that code for enzymes, and trying to assemble the catalyzed reactions to form metabolic pathways.We present tools to answer these two questions, and we illustrate their use with selected examples in the yeast Saccharomyces cerevisiae. The tools are available on the web (http://ucmb.ulb.ac.be/bioinformatics/rsa-tools/; http://www.ebi.ac.uk/research/pfbp/; http://www.soi.city.ac.uk/~msch/).",
"editor": [
{
"familyName": "Gascuel",
"givenName": "Olivier",
"type": "Person"
},
{
"familyName": "Sagot",
"givenName": "Marie-France",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/3-540-45727-5_13",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": {
"isbn": [
"978-3-540-42242-6",
"978-3-540-45727-5"
],
"name": "Computational Biology",
"type": "Book"
},
"keywords": [
"putative cis-acting regulatory elements",
"metabolic pathways",
"cis-acting regulatory elements",
"co-regulated genes",
"coordinated transcriptional response",
"cluster of genes",
"regulatory sequence analysis",
"similar expression profiles",
"metabolic network analysis",
"gene expression data",
"transcriptional response",
"yeast Saccharomyces",
"potential metabolic pathways",
"regulatory elements",
"upstream sequences",
"expression profiles",
"sequence analysis",
"expression data",
"genes",
"DNA chip",
"motif",
"physiological meaning",
"pathway",
"network analysis",
"complementary approaches",
"Saccharomyces",
"enzyme",
"clusters",
"sequence",
"cells",
"basic questions",
"mechanism",
"analysis",
"response",
"tool",
"catalyzed reactions",
"profile",
"Web",
"elements",
"questions",
"products",
"interpretation of clusters",
"related methods",
"data",
"reaction",
"example",
"approach",
"interpretation",
"use",
"chip",
"way",
"applications",
"method",
"code",
"meaning"
],
"name": "Application of Regulatory Sequence Analysis and Metabolic Network Analysis to the Interpretation of Gene Expression Data",
"pagination": "147-163",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1040453075"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/3-540-45727-5_13"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/3-540-45727-5_13",
"https://app.dimensions.ai/details/publication/pub.1040453075"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-20T07:47",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_40.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/3-540-45727-5_13"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-540-45727-5_13'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-540-45727-5_13'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-540-45727-5_13'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-540-45727-5_13'
This table displays all metadata directly associated to this object as RDF triples.
153 TRIPLES
23 PREDICATES
80 URIs
73 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/3-540-45727-5_13 | schema:about | anzsrc-for:06 |
2 | ″ | ″ | anzsrc-for:0604 |
3 | ″ | schema:author | N4642c25d73794d70b1f2ff0640a8fa05 |
4 | ″ | schema:datePublished | 2001-06-28 |
5 | ″ | schema:datePublishedReg | 2001-06-28 |
6 | ″ | schema:description | We present two complementary approaches for the interpretation of clusters of co-regulated genes, such as those obtained from DNA chips and related methods. Starting from a cluster of genes with similar expression profiles, two basic questions can be asked: Which mechanism is responsible for the coordinated transcriptional response of the genes? This question is approached by extracting motifs that are shared between the upstream sequences of these genes. The motifs extracted are putative cis-acting regulatory elements.What is the physiological meaning for the cell to express together these genes? One way to answer the question is to search for potential metabolic pathways that could be catalyzed by the products of the genes. This can be done by selecting the genes from the cluster that code for enzymes, and trying to assemble the catalyzed reactions to form metabolic pathways.We present tools to answer these two questions, and we illustrate their use with selected examples in the yeast Saccharomyces cerevisiae. The tools are available on the web (http://ucmb.ulb.ac.be/bioinformatics/rsa-tools/; http://www.ebi.ac.uk/research/pfbp/; http://www.soi.city.ac.uk/~msch/). |
7 | ″ | schema:editor | N1e3c1277067e4c83bf254c9ef83e5e78 |
8 | ″ | schema:genre | chapter |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | true |
11 | ″ | schema:isPartOf | N03475fce4110455a8f61f729ecf6ba04 |
12 | ″ | schema:keywords | DNA chip |
13 | ″ | ″ | Saccharomyces |
14 | ″ | ″ | Web |
15 | ″ | ″ | analysis |
16 | ″ | ″ | applications |
17 | ″ | ″ | approach |
18 | ″ | ″ | basic questions |
19 | ″ | ″ | catalyzed reactions |
20 | ″ | ″ | cells |
21 | ″ | ″ | chip |
22 | ″ | ″ | cis-acting regulatory elements |
23 | ″ | ″ | cluster of genes |
24 | ″ | ″ | clusters |
25 | ″ | ″ | co-regulated genes |
26 | ″ | ″ | code |
27 | ″ | ″ | complementary approaches |
28 | ″ | ″ | coordinated transcriptional response |
29 | ″ | ″ | data |
30 | ″ | ″ | elements |
31 | ″ | ″ | enzyme |
32 | ″ | ″ | example |
33 | ″ | ″ | expression data |
34 | ″ | ″ | expression profiles |
35 | ″ | ″ | gene expression data |
36 | ″ | ″ | genes |
37 | ″ | ″ | interpretation |
38 | ″ | ″ | interpretation of clusters |
39 | ″ | ″ | meaning |
40 | ″ | ″ | mechanism |
41 | ″ | ″ | metabolic network analysis |
42 | ″ | ″ | metabolic pathways |
43 | ″ | ″ | method |
44 | ″ | ″ | motif |
45 | ″ | ″ | network analysis |
46 | ″ | ″ | pathway |
47 | ″ | ″ | physiological meaning |
48 | ″ | ″ | potential metabolic pathways |
49 | ″ | ″ | products |
50 | ″ | ″ | profile |
51 | ″ | ″ | putative cis-acting regulatory elements |
52 | ″ | ″ | questions |
53 | ″ | ″ | reaction |
54 | ″ | ″ | regulatory elements |
55 | ″ | ″ | regulatory sequence analysis |
56 | ″ | ″ | related methods |
57 | ″ | ″ | response |
58 | ″ | ″ | sequence |
59 | ″ | ″ | sequence analysis |
60 | ″ | ″ | similar expression profiles |
61 | ″ | ″ | tool |
62 | ″ | ″ | transcriptional response |
63 | ″ | ″ | upstream sequences |
64 | ″ | ″ | use |
65 | ″ | ″ | way |
66 | ″ | ″ | yeast Saccharomyces |
67 | ″ | schema:name | Application of Regulatory Sequence Analysis and Metabolic Network Analysis to the Interpretation of Gene Expression Data |
68 | ″ | schema:pagination | 147-163 |
69 | ″ | schema:productId | N973ae8dd8d8345d39a03c4b775fff340 |
70 | ″ | ″ | Nd5e302c352fe4e9bb85ba183f33086ab |
71 | ″ | schema:publisher | N89762091432b4decb88912ed5257e019 |
72 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1040453075 |
73 | ″ | ″ | https://doi.org/10.1007/3-540-45727-5_13 |
74 | ″ | schema:sdDatePublished | 2022-05-20T07:47 |
75 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
76 | ″ | schema:sdPublisher | N97b7fffcaeec48f8bc17ff7054f98cba |
77 | ″ | schema:url | https://doi.org/10.1007/3-540-45727-5_13 |
78 | ″ | sgo:license | sg:explorer/license/ |
79 | ″ | sgo:sdDataset | chapters |
80 | ″ | rdf:type | schema:Chapter |
81 | N03475fce4110455a8f61f729ecf6ba04 | schema:isbn | 978-3-540-42242-6 |
82 | ″ | ″ | 978-3-540-45727-5 |
83 | ″ | schema:name | Computational Biology |
84 | ″ | rdf:type | schema:Book |
85 | N04648c0e946246eca2d786c01dc86bf4 | rdf:first | sg:person.01132465512.22 |
86 | ″ | rdf:rest | N7ca8a714a26e45b69771c009ced60670 |
87 | N1e3c1277067e4c83bf254c9ef83e5e78 | rdf:first | N3fbbf67c054b4121b45ae17100b17510 |
88 | ″ | rdf:rest | N74c0d95e77574df894e8233e42d62370 |
89 | N3fbbf67c054b4121b45ae17100b17510 | schema:familyName | Gascuel |
90 | ″ | schema:givenName | Olivier |
91 | ″ | rdf:type | schema:Person |
92 | N4642c25d73794d70b1f2ff0640a8fa05 | rdf:first | sg:person.0626672543.46 |
93 | ″ | rdf:rest | Nb6f073312de747908baf86e5a8d08f86 |
94 | N6b5f9aeefb334fae9960d01220afad63 | schema:familyName | Sagot |
95 | ″ | schema:givenName | Marie-France |
96 | ″ | rdf:type | schema:Person |
97 | N74c0d95e77574df894e8233e42d62370 | rdf:first | N6b5f9aeefb334fae9960d01220afad63 |
98 | ″ | rdf:rest | rdf:nil |
99 | N7ca8a714a26e45b69771c009ced60670 | rdf:first | sg:person.01127320076.40 |
100 | ″ | rdf:rest | Ndd4c12d64fc74b06bb8b654013aed807 |
101 | N89762091432b4decb88912ed5257e019 | schema:name | Springer Nature |
102 | ″ | rdf:type | schema:Organisation |
103 | N973ae8dd8d8345d39a03c4b775fff340 | schema:name | dimensions_id |
104 | ″ | schema:value | pub.1040453075 |
105 | ″ | rdf:type | schema:PropertyValue |
106 | N97b7fffcaeec48f8bc17ff7054f98cba | schema:name | Springer Nature - SN SciGraph project |
107 | ″ | rdf:type | schema:Organization |
108 | Nb6f073312de747908baf86e5a8d08f86 | rdf:first | sg:person.01024373510.92 |
109 | ″ | rdf:rest | N04648c0e946246eca2d786c01dc86bf4 |
110 | Nd5e302c352fe4e9bb85ba183f33086ab | schema:name | doi |
111 | ″ | schema:value | 10.1007/3-540-45727-5_13 |
112 | ″ | rdf:type | schema:PropertyValue |
113 | Ndd4c12d64fc74b06bb8b654013aed807 | rdf:first | sg:person.0664143231.02 |
114 | ″ | rdf:rest | rdf:nil |
115 | anzsrc-for:06 | schema:inDefinedTermSet | anzsrc-for: |
116 | ″ | schema:name | Biological Sciences |
117 | ″ | rdf:type | schema:DefinedTerm |
118 | anzsrc-for:0604 | schema:inDefinedTermSet | anzsrc-for: |
119 | ″ | schema:name | Genetics |
120 | ″ | rdf:type | schema:DefinedTerm |
121 | sg:person.01024373510.92 | schema:affiliation | grid-institutes:grid.28577.3f |
122 | ″ | schema:familyName | Gilbert |
123 | ″ | schema:givenName | David |
124 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024373510.92 |
125 | ″ | rdf:type | schema:Person |
126 | sg:person.01127320076.40 | schema:affiliation | grid-institutes:grid.28577.3f |
127 | ″ | schema:familyName | Schroeder |
128 | ″ | schema:givenName | Michael |
129 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01127320076.40 |
130 | ″ | rdf:type | schema:Person |
131 | sg:person.01132465512.22 | schema:affiliation | grid-institutes:grid.225360.0 |
132 | ″ | schema:familyName | Wernisch |
133 | ″ | schema:givenName | Lorenz |
134 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01132465512.22 |
135 | ″ | rdf:type | schema:Person |
136 | sg:person.0626672543.46 | schema:affiliation | grid-institutes:grid.225360.0 |
137 | ″ | schema:familyName | van Helden |
138 | ″ | schema:givenName | Jacques |
139 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0626672543.46 |
140 | ″ | rdf:type | schema:Person |
141 | sg:person.0664143231.02 | schema:affiliation | grid-institutes:grid.225360.0 |
142 | ″ | schema:familyName | Wodak |
143 | ″ | schema:givenName | Shoshana |
144 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664143231.02 |
145 | ″ | rdf:type | schema:Person |
146 | grid-institutes:grid.225360.0 | schema:alternateName | Genome Campus -, European Bioinformatics Institute, Hinxton, CB10 1SD -, Cambridge, UK |
147 | ″ | schema:name | Genome Campus -, European Bioinformatics Institute, Hinxton, CB10 1SD -, Cambridge, UK |
148 | ″ | ″ | SCMBB, Université Libre de Bruxelles, CP160/16. 50 av F.D. Roosevelt, B-1050, Bruxelles, Belgique |
149 | ″ | rdf:type | schema:Organization |
150 | grid-institutes:grid.28577.3f | schema:alternateName | Department of Computing, City University, Northampton Square, EC1V 0HB, London, UK |
151 | ″ | schema:name | Department of Computing, City University, Northampton Square, EC1V 0HB, London, UK |
152 | ″ | ″ | Genome Campus -, European Bioinformatics Institute, Hinxton, CB10 1SD -, Cambridge, UK |
153 | ″ | rdf:type | schema:Organization |