On the Eigenvalue Power Law View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2002-08-23

AUTHORS

Milena Mihail , Christos Papadimitriou

ABSTRACT

We show that the largest eigenvalues of graphs whose highest degrees are Zipf-like distributed with slope a are distributed according to a power law with slope α/2. This follows as a direct and almost certain corollary of the degree power law. Our result has implications for the singular value decomposition method in information retrieval. More... »

PAGES

254-262

Book

TITLE

Randomization and Approximation Techniques in Computer Science

ISBN

978-3-540-44147-2
978-3-540-45726-8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/3-540-45726-7_20

DOI

http://dx.doi.org/10.1007/3-540-45726-7_20

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1053218215


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/18", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Law and Legal Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Law", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "College of Computing, Georgia Institute of Technology, Atlanta, GA", 
          "id": "http://www.grid.ac/institutes/grid.213917.f", 
          "name": [
            "College of Computing, Georgia Institute of Technology, Atlanta, GA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mihail", 
        "givenName": "Milena", 
        "id": "sg:person.01261441720.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01261441720.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Computer Science Department, Berkeley, CA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Computer Science Department, Berkeley, CA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Papadimitriou", 
        "givenName": "Christos", 
        "id": "sg:person.013233165465.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013233165465.63"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2002-08-23", 
    "datePublishedReg": "2002-08-23", 
    "description": "We show that the largest eigenvalues of graphs whose highest degrees are Zipf-like distributed with slope a are distributed according to a power law with slope \u03b1/2. This follows as a direct and almost certain corollary of the degree power law. Our result has implications for the singular value decomposition method in information retrieval.", 
    "editor": [
      {
        "familyName": "Rolim", 
        "givenName": "Jos\u00e9 D. P.", 
        "type": "Person"
      }, 
      {
        "familyName": "Vadhan", 
        "givenName": "Salil", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/3-540-45726-7_20", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-44147-2", 
        "978-3-540-45726-8"
      ], 
      "name": "Randomization and Approximation Techniques in Computer Science", 
      "type": "Book"
    }, 
    "keywords": [
      "law", 
      "power law", 
      "Zipf", 
      "corollary", 
      "implications", 
      "information retrieval", 
      "high degree", 
      "degree", 
      "retrieval", 
      "results", 
      "method", 
      "largest eigenvalue", 
      "eigenvalues", 
      "graph", 
      "slope", 
      "singular value decomposition method", 
      "decomposition method", 
      "certain corollaries", 
      "degree power law", 
      "value decomposition method", 
      "Eigenvalue Power Law"
    ], 
    "name": "On the Eigenvalue Power Law", 
    "pagination": "254-262", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1053218215"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/3-540-45726-7_20"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/3-540-45726-7_20", 
      "https://app.dimensions.ai/details/publication/pub.1053218215"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-12-01T20:12", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/chapter/chapter_68.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/3-540-45726-7_20"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-540-45726-7_20'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-540-45726-7_20'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-540-45726-7_20'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-540-45726-7_20'


 

This table displays all metadata directly associated to this object as RDF triples.

96 TRIPLES      23 PREDICATES      46 URIs      39 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/3-540-45726-7_20 schema:about anzsrc-for:18
2 anzsrc-for:1801
3 schema:author N66207913dace40f29aa2dc866b32c3f9
4 schema:datePublished 2002-08-23
5 schema:datePublishedReg 2002-08-23
6 schema:description We show that the largest eigenvalues of graphs whose highest degrees are Zipf-like distributed with slope a are distributed according to a power law with slope α/2. This follows as a direct and almost certain corollary of the degree power law. Our result has implications for the singular value decomposition method in information retrieval.
7 schema:editor Nde6cb59b25c74fa3b7f16a45898edde5
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N6d7e425569d349adb0129ebf33046d59
12 schema:keywords Eigenvalue Power Law
13 Zipf
14 certain corollaries
15 corollary
16 decomposition method
17 degree
18 degree power law
19 eigenvalues
20 graph
21 high degree
22 implications
23 information retrieval
24 largest eigenvalue
25 law
26 method
27 power law
28 results
29 retrieval
30 singular value decomposition method
31 slope
32 value decomposition method
33 schema:name On the Eigenvalue Power Law
34 schema:pagination 254-262
35 schema:productId N098e36b7e91c453ca887d8e36f46fa2a
36 Nfa9d27ed48184b8dbab431fed85c1af0
37 schema:publisher Nd94c6c1ad9bb4124a7ab1654cb45e88f
38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053218215
39 https://doi.org/10.1007/3-540-45726-7_20
40 schema:sdDatePublished 2021-12-01T20:12
41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
42 schema:sdPublisher N2c127fa17f4142e1bcc612b99ceb7116
43 schema:url https://doi.org/10.1007/3-540-45726-7_20
44 sgo:license sg:explorer/license/
45 sgo:sdDataset chapters
46 rdf:type schema:Chapter
47 N098e36b7e91c453ca887d8e36f46fa2a schema:name dimensions_id
48 schema:value pub.1053218215
49 rdf:type schema:PropertyValue
50 N2c127fa17f4142e1bcc612b99ceb7116 schema:name Springer Nature - SN SciGraph project
51 rdf:type schema:Organization
52 N45764b28fe4b49f28a88dbf5cea30a08 schema:familyName Vadhan
53 schema:givenName Salil
54 rdf:type schema:Person
55 N66207913dace40f29aa2dc866b32c3f9 rdf:first sg:person.01261441720.77
56 rdf:rest N75cc9ae41dd1409fbe947a8881e31c25
57 N6d7e425569d349adb0129ebf33046d59 schema:isbn 978-3-540-44147-2
58 978-3-540-45726-8
59 schema:name Randomization and Approximation Techniques in Computer Science
60 rdf:type schema:Book
61 N75cc9ae41dd1409fbe947a8881e31c25 rdf:first sg:person.013233165465.63
62 rdf:rest rdf:nil
63 N8c303e3ce9c84593ba7bba8bfa788546 rdf:first N45764b28fe4b49f28a88dbf5cea30a08
64 rdf:rest rdf:nil
65 Nd94c6c1ad9bb4124a7ab1654cb45e88f schema:name Springer Nature
66 rdf:type schema:Organisation
67 Nde6cb59b25c74fa3b7f16a45898edde5 rdf:first Neeec240817ab4932938ef2f1a7938270
68 rdf:rest N8c303e3ce9c84593ba7bba8bfa788546
69 Neeec240817ab4932938ef2f1a7938270 schema:familyName Rolim
70 schema:givenName José D. P.
71 rdf:type schema:Person
72 Nfa9d27ed48184b8dbab431fed85c1af0 schema:name doi
73 schema:value 10.1007/3-540-45726-7_20
74 rdf:type schema:PropertyValue
75 anzsrc-for:18 schema:inDefinedTermSet anzsrc-for:
76 schema:name Law and Legal Studies
77 rdf:type schema:DefinedTerm
78 anzsrc-for:1801 schema:inDefinedTermSet anzsrc-for:
79 schema:name Law
80 rdf:type schema:DefinedTerm
81 sg:person.01261441720.77 schema:affiliation grid-institutes:grid.213917.f
82 schema:familyName Mihail
83 schema:givenName Milena
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01261441720.77
85 rdf:type schema:Person
86 sg:person.013233165465.63 schema:affiliation grid-institutes:None
87 schema:familyName Papadimitriou
88 schema:givenName Christos
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013233165465.63
90 rdf:type schema:Person
91 grid-institutes:None schema:alternateName Computer Science Department, Berkeley, CA
92 schema:name Computer Science Department, Berkeley, CA
93 rdf:type schema:Organization
94 grid-institutes:grid.213917.f schema:alternateName College of Computing, Georgia Institute of Technology, Atlanta, GA
95 schema:name College of Computing, Georgia Institute of Technology, Atlanta, GA
96 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...