Real Time Tracking and Visualisation of Musical Expression View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2002

AUTHORS

Simon Dixon , Werner Goebl , Gerhard Widmer

ABSTRACT

Skilled musicians are able to shape a given piece of music (by continuously modulating aspects like tempo, loudness, etc.) to communicate high level information such as musical structure and emotion. This activity is commonly referred to as expressive music performance. The present paper presents another step towards the automatic high-level analysis of this elusive phenomenon with AI methods. A system is presented that is able to measure tempo and dynamics of a musical performance and to track their development over time. The system accepts raw audio input, tracks tempo and dynamics changes in real time, and displays the development of these expressive parameters in an intuitive and aesthetically appealing graphical format which provides insight into the expressive patterns applied by skilled artists. The paper describes the tempo tracking algorithm (based on a new clustering method) in detail, and then presents an application of the system to the analysis of performances by different pianists. More... »

PAGES

58-68

Book

TITLE

Music and Artificial Intelligence

ISBN

978-3-540-44145-8
978-3-540-45722-0

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/3-540-45722-4_7

DOI

http://dx.doi.org/10.1007/3-540-45722-4_7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1007302965


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Austrian Research Institute for Artificial Intelligence", 
          "id": "https://www.grid.ac/institutes/grid.432019.d", 
          "name": [
            "Austrian Research Institute for Artificial Intelligence, Schottengasse 3, A-1010\u00a0Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dixon", 
        "givenName": "Simon", 
        "id": "sg:person.0627135504.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627135504.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Austrian Research Institute for Artificial Intelligence", 
          "id": "https://www.grid.ac/institutes/grid.432019.d", 
          "name": [
            "Austrian Research Institute for Artificial Intelligence, Schottengasse 3, A-1010\u00a0Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Goebl", 
        "givenName": "Werner", 
        "id": "sg:person.01314217577.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01314217577.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Austrian Research Institute for Artificial Intelligence", 
          "id": "https://www.grid.ac/institutes/grid.432019.d", 
          "name": [
            "Austrian Research Institute for Artificial Intelligence, Schottengasse 3, A-1010\u00a0Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Widmer", 
        "givenName": "Gerhard", 
        "id": "sg:person.013641401431.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013641401431.40"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1080/09540099408915723", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019415480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-6393(98)00076-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021134317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1076/jnmr.30.1.39.7119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032385808"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1121/1.421129", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062372397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3680012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070407479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3680495", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070407845"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2002", 
    "datePublishedReg": "2002-01-01", 
    "description": "Skilled musicians are able to shape a given piece of music (by continuously modulating aspects like tempo, loudness, etc.) to communicate high level information such as musical structure and emotion. This activity is commonly referred to as expressive music performance. The present paper presents another step towards the automatic high-level analysis of this elusive phenomenon with AI methods. A system is presented that is able to measure tempo and dynamics of a musical performance and to track their development over time. The system accepts raw audio input, tracks tempo and dynamics changes in real time, and displays the development of these expressive parameters in an intuitive and aesthetically appealing graphical format which provides insight into the expressive patterns applied by skilled artists. The paper describes the tempo tracking algorithm (based on a new clustering method) in detail, and then presents an application of the system to the analysis of performances by different pianists.", 
    "editor": [
      {
        "familyName": "Anagnostopoulou", 
        "givenName": "Christina", 
        "type": "Person"
      }, 
      {
        "familyName": "Ferrand", 
        "givenName": "Miguel", 
        "type": "Person"
      }, 
      {
        "familyName": "Smaill", 
        "givenName": "Alan", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/3-540-45722-4_7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-540-44145-8", 
        "978-3-540-45722-0"
      ], 
      "name": "Music and Artificial Intelligence", 
      "type": "Book"
    }, 
    "name": "Real Time Tracking and Visualisation of Musical Expression", 
    "pagination": "58-68", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/3-540-45722-4_7"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "22c9538731bc1dc9877707c9a714c1b1e3c203e0cc9a5e7fac3477e05514f151"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1007302965"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/3-540-45722-4_7", 
      "https://app.dimensions.ai/details/publication/pub.1007302965"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T00:46", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000247.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/3-540-45722-4_7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-540-45722-4_7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-540-45722-4_7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-540-45722-4_7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-540-45722-4_7'


 

This table displays all metadata directly associated to this object as RDF triples.

107 TRIPLES      23 PREDICATES      33 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/3-540-45722-4_7 schema:about anzsrc-for:17
2 anzsrc-for:1701
3 schema:author N70dd07cf22ed4f308722e58c40e62328
4 schema:citation https://doi.org/10.1016/s0167-6393(98)00076-4
5 https://doi.org/10.1076/jnmr.30.1.39.7119
6 https://doi.org/10.1080/09540099408915723
7 https://doi.org/10.1121/1.421129
8 https://doi.org/10.2307/3680012
9 https://doi.org/10.2307/3680495
10 schema:datePublished 2002
11 schema:datePublishedReg 2002-01-01
12 schema:description Skilled musicians are able to shape a given piece of music (by continuously modulating aspects like tempo, loudness, etc.) to communicate high level information such as musical structure and emotion. This activity is commonly referred to as expressive music performance. The present paper presents another step towards the automatic high-level analysis of this elusive phenomenon with AI methods. A system is presented that is able to measure tempo and dynamics of a musical performance and to track their development over time. The system accepts raw audio input, tracks tempo and dynamics changes in real time, and displays the development of these expressive parameters in an intuitive and aesthetically appealing graphical format which provides insight into the expressive patterns applied by skilled artists. The paper describes the tempo tracking algorithm (based on a new clustering method) in detail, and then presents an application of the system to the analysis of performances by different pianists.
13 schema:editor Nb9436b7ad1b648d0be88701560443226
14 schema:genre chapter
15 schema:inLanguage en
16 schema:isAccessibleForFree true
17 schema:isPartOf Ndcd570b6af3f4eb186f20b6132c34f27
18 schema:name Real Time Tracking and Visualisation of Musical Expression
19 schema:pagination 58-68
20 schema:productId N55cc35a119b248088d3b722d3265866c
21 Na21a8ed628a1485ebf6c7db456155af1
22 Ne9e8c303811c445ba0f4dc2bafb51e32
23 schema:publisher Nd29e157e3f4942dc9e9f8ea75ffb8c93
24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007302965
25 https://doi.org/10.1007/3-540-45722-4_7
26 schema:sdDatePublished 2019-04-16T00:46
27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
28 schema:sdPublisher N7ec79bee01d946fcb4a527fb8c47681b
29 schema:url http://link.springer.com/10.1007/3-540-45722-4_7
30 sgo:license sg:explorer/license/
31 sgo:sdDataset chapters
32 rdf:type schema:Chapter
33 N36187e8e2f6c4b8e9f7183161cfa776a rdf:first N6792abefac7c47ccbc345a9c31ea493c
34 rdf:rest Nbe0aacc3899b426ea4dd4ae75a7e03f2
35 N55cc35a119b248088d3b722d3265866c schema:name dimensions_id
36 schema:value pub.1007302965
37 rdf:type schema:PropertyValue
38 N6792abefac7c47ccbc345a9c31ea493c schema:familyName Ferrand
39 schema:givenName Miguel
40 rdf:type schema:Person
41 N70dd07cf22ed4f308722e58c40e62328 rdf:first sg:person.0627135504.09
42 rdf:rest N77a11ccb7c5e4891b38966876c538eef
43 N77a11ccb7c5e4891b38966876c538eef rdf:first sg:person.01314217577.61
44 rdf:rest Ndfd92c2c5d0046d58d57ee537be30ef8
45 N7ec79bee01d946fcb4a527fb8c47681b schema:name Springer Nature - SN SciGraph project
46 rdf:type schema:Organization
47 Na21a8ed628a1485ebf6c7db456155af1 schema:name doi
48 schema:value 10.1007/3-540-45722-4_7
49 rdf:type schema:PropertyValue
50 Nabec7f3bc3174a8789ff9b4f1056dfef schema:familyName Smaill
51 schema:givenName Alan
52 rdf:type schema:Person
53 Nb9436b7ad1b648d0be88701560443226 rdf:first Ne2caa6983543487084cf9f699bbd8f00
54 rdf:rest N36187e8e2f6c4b8e9f7183161cfa776a
55 Nbe0aacc3899b426ea4dd4ae75a7e03f2 rdf:first Nabec7f3bc3174a8789ff9b4f1056dfef
56 rdf:rest rdf:nil
57 Nd29e157e3f4942dc9e9f8ea75ffb8c93 schema:location Berlin, Heidelberg
58 schema:name Springer Berlin Heidelberg
59 rdf:type schema:Organisation
60 Ndcd570b6af3f4eb186f20b6132c34f27 schema:isbn 978-3-540-44145-8
61 978-3-540-45722-0
62 schema:name Music and Artificial Intelligence
63 rdf:type schema:Book
64 Ndfd92c2c5d0046d58d57ee537be30ef8 rdf:first sg:person.013641401431.40
65 rdf:rest rdf:nil
66 Ne2caa6983543487084cf9f699bbd8f00 schema:familyName Anagnostopoulou
67 schema:givenName Christina
68 rdf:type schema:Person
69 Ne9e8c303811c445ba0f4dc2bafb51e32 schema:name readcube_id
70 schema:value 22c9538731bc1dc9877707c9a714c1b1e3c203e0cc9a5e7fac3477e05514f151
71 rdf:type schema:PropertyValue
72 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
73 schema:name Psychology and Cognitive Sciences
74 rdf:type schema:DefinedTerm
75 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
76 schema:name Psychology
77 rdf:type schema:DefinedTerm
78 sg:person.01314217577.61 schema:affiliation https://www.grid.ac/institutes/grid.432019.d
79 schema:familyName Goebl
80 schema:givenName Werner
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01314217577.61
82 rdf:type schema:Person
83 sg:person.013641401431.40 schema:affiliation https://www.grid.ac/institutes/grid.432019.d
84 schema:familyName Widmer
85 schema:givenName Gerhard
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013641401431.40
87 rdf:type schema:Person
88 sg:person.0627135504.09 schema:affiliation https://www.grid.ac/institutes/grid.432019.d
89 schema:familyName Dixon
90 schema:givenName Simon
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627135504.09
92 rdf:type schema:Person
93 https://doi.org/10.1016/s0167-6393(98)00076-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021134317
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1076/jnmr.30.1.39.7119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032385808
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1080/09540099408915723 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019415480
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1121/1.421129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062372397
100 rdf:type schema:CreativeWork
101 https://doi.org/10.2307/3680012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070407479
102 rdf:type schema:CreativeWork
103 https://doi.org/10.2307/3680495 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070407845
104 rdf:type schema:CreativeWork
105 https://www.grid.ac/institutes/grid.432019.d schema:alternateName Austrian Research Institute for Artificial Intelligence
106 schema:name Austrian Research Institute for Artificial Intelligence, Schottengasse 3, A-1010 Vienna, Austria
107 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...