Real Time Tracking and Visualisation of Musical Expression View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2002

AUTHORS

Simon Dixon , Werner Goebl , Gerhard Widmer

ABSTRACT

Skilled musicians are able to shape a given piece of music (by continuously modulating aspects like tempo, loudness, etc.) to communicate high level information such as musical structure and emotion. This activity is commonly referred to as expressive music performance. The present paper presents another step towards the automatic high-level analysis of this elusive phenomenon with AI methods. A system is presented that is able to measure tempo and dynamics of a musical performance and to track their development over time. The system accepts raw audio input, tracks tempo and dynamics changes in real time, and displays the development of these expressive parameters in an intuitive and aesthetically appealing graphical format which provides insight into the expressive patterns applied by skilled artists. The paper describes the tempo tracking algorithm (based on a new clustering method) in detail, and then presents an application of the system to the analysis of performances by different pianists. More... »

PAGES

58-68

Book

TITLE

Music and Artificial Intelligence

ISBN

978-3-540-44145-8
978-3-540-45722-0

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/3-540-45722-4_7

DOI

http://dx.doi.org/10.1007/3-540-45722-4_7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1007302965


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Austrian Research Institute for Artificial Intelligence", 
          "id": "https://www.grid.ac/institutes/grid.432019.d", 
          "name": [
            "Austrian Research Institute for Artificial Intelligence, Schottengasse 3, A-1010\u00a0Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dixon", 
        "givenName": "Simon", 
        "id": "sg:person.0627135504.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627135504.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Austrian Research Institute for Artificial Intelligence", 
          "id": "https://www.grid.ac/institutes/grid.432019.d", 
          "name": [
            "Austrian Research Institute for Artificial Intelligence, Schottengasse 3, A-1010\u00a0Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Goebl", 
        "givenName": "Werner", 
        "id": "sg:person.01314217577.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01314217577.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Austrian Research Institute for Artificial Intelligence", 
          "id": "https://www.grid.ac/institutes/grid.432019.d", 
          "name": [
            "Austrian Research Institute for Artificial Intelligence, Schottengasse 3, A-1010\u00a0Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Widmer", 
        "givenName": "Gerhard", 
        "id": "sg:person.013641401431.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013641401431.40"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1080/09540099408915723", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019415480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-6393(98)00076-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021134317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1076/jnmr.30.1.39.7119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032385808"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1121/1.421129", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062372397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3680012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070407479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3680495", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070407845"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2002", 
    "datePublishedReg": "2002-01-01", 
    "description": "Skilled musicians are able to shape a given piece of music (by continuously modulating aspects like tempo, loudness, etc.) to communicate high level information such as musical structure and emotion. This activity is commonly referred to as expressive music performance. The present paper presents another step towards the automatic high-level analysis of this elusive phenomenon with AI methods. A system is presented that is able to measure tempo and dynamics of a musical performance and to track their development over time. The system accepts raw audio input, tracks tempo and dynamics changes in real time, and displays the development of these expressive parameters in an intuitive and aesthetically appealing graphical format which provides insight into the expressive patterns applied by skilled artists. The paper describes the tempo tracking algorithm (based on a new clustering method) in detail, and then presents an application of the system to the analysis of performances by different pianists.", 
    "editor": [
      {
        "familyName": "Anagnostopoulou", 
        "givenName": "Christina", 
        "type": "Person"
      }, 
      {
        "familyName": "Ferrand", 
        "givenName": "Miguel", 
        "type": "Person"
      }, 
      {
        "familyName": "Smaill", 
        "givenName": "Alan", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/3-540-45722-4_7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-540-44145-8", 
        "978-3-540-45722-0"
      ], 
      "name": "Music and Artificial Intelligence", 
      "type": "Book"
    }, 
    "name": "Real Time Tracking and Visualisation of Musical Expression", 
    "pagination": "58-68", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/3-540-45722-4_7"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "22c9538731bc1dc9877707c9a714c1b1e3c203e0cc9a5e7fac3477e05514f151"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1007302965"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/3-540-45722-4_7", 
      "https://app.dimensions.ai/details/publication/pub.1007302965"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T00:46", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000247.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/3-540-45722-4_7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-540-45722-4_7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-540-45722-4_7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-540-45722-4_7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-540-45722-4_7'


 

This table displays all metadata directly associated to this object as RDF triples.

107 TRIPLES      23 PREDICATES      33 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/3-540-45722-4_7 schema:about anzsrc-for:17
2 anzsrc-for:1701
3 schema:author Naaabbde0e4b04bd7859cf9965c53fd3e
4 schema:citation https://doi.org/10.1016/s0167-6393(98)00076-4
5 https://doi.org/10.1076/jnmr.30.1.39.7119
6 https://doi.org/10.1080/09540099408915723
7 https://doi.org/10.1121/1.421129
8 https://doi.org/10.2307/3680012
9 https://doi.org/10.2307/3680495
10 schema:datePublished 2002
11 schema:datePublishedReg 2002-01-01
12 schema:description Skilled musicians are able to shape a given piece of music (by continuously modulating aspects like tempo, loudness, etc.) to communicate high level information such as musical structure and emotion. This activity is commonly referred to as expressive music performance. The present paper presents another step towards the automatic high-level analysis of this elusive phenomenon with AI methods. A system is presented that is able to measure tempo and dynamics of a musical performance and to track their development over time. The system accepts raw audio input, tracks tempo and dynamics changes in real time, and displays the development of these expressive parameters in an intuitive and aesthetically appealing graphical format which provides insight into the expressive patterns applied by skilled artists. The paper describes the tempo tracking algorithm (based on a new clustering method) in detail, and then presents an application of the system to the analysis of performances by different pianists.
13 schema:editor Nddfdb712f1f340859ae2a8b4877f4e89
14 schema:genre chapter
15 schema:inLanguage en
16 schema:isAccessibleForFree true
17 schema:isPartOf N35a438d76d1540848b889414689accdb
18 schema:name Real Time Tracking and Visualisation of Musical Expression
19 schema:pagination 58-68
20 schema:productId Nba688180c1e646cd85a36886ea2bb08a
21 Nd5c1092ad60a421aab9aa780caa503a6
22 Ndd0fd21437be4f86a333a544ae88a291
23 schema:publisher N19fa88d96a5242b6a193a06ecac767ce
24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007302965
25 https://doi.org/10.1007/3-540-45722-4_7
26 schema:sdDatePublished 2019-04-16T00:46
27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
28 schema:sdPublisher Nc60339c120ca4cc7aad23a2c7adc197a
29 schema:url http://link.springer.com/10.1007/3-540-45722-4_7
30 sgo:license sg:explorer/license/
31 sgo:sdDataset chapters
32 rdf:type schema:Chapter
33 N19fa88d96a5242b6a193a06ecac767ce schema:location Berlin, Heidelberg
34 schema:name Springer Berlin Heidelberg
35 rdf:type schema:Organisation
36 N2481e8410ccb4f3eb85dd05abb595493 rdf:first sg:person.01314217577.61
37 rdf:rest N812dc5df6814466c80dda1f25015cc05
38 N2f6f9f8d49ba4cd5ba8c87e0ad4ef5b4 rdf:first Nfbcadf5a6a994f60ac494cdc124fcd45
39 rdf:rest N6a4b2f1f16fb41268f81da8d922b2ab0
40 N35a438d76d1540848b889414689accdb schema:isbn 978-3-540-44145-8
41 978-3-540-45722-0
42 schema:name Music and Artificial Intelligence
43 rdf:type schema:Book
44 N36a238a6350c4202a412846f812ad860 schema:familyName Anagnostopoulou
45 schema:givenName Christina
46 rdf:type schema:Person
47 N5d170f13aad142cba4c00ddda9cbea55 schema:familyName Smaill
48 schema:givenName Alan
49 rdf:type schema:Person
50 N6a4b2f1f16fb41268f81da8d922b2ab0 rdf:first N5d170f13aad142cba4c00ddda9cbea55
51 rdf:rest rdf:nil
52 N812dc5df6814466c80dda1f25015cc05 rdf:first sg:person.013641401431.40
53 rdf:rest rdf:nil
54 Naaabbde0e4b04bd7859cf9965c53fd3e rdf:first sg:person.0627135504.09
55 rdf:rest N2481e8410ccb4f3eb85dd05abb595493
56 Nba688180c1e646cd85a36886ea2bb08a schema:name readcube_id
57 schema:value 22c9538731bc1dc9877707c9a714c1b1e3c203e0cc9a5e7fac3477e05514f151
58 rdf:type schema:PropertyValue
59 Nc60339c120ca4cc7aad23a2c7adc197a schema:name Springer Nature - SN SciGraph project
60 rdf:type schema:Organization
61 Nd5c1092ad60a421aab9aa780caa503a6 schema:name doi
62 schema:value 10.1007/3-540-45722-4_7
63 rdf:type schema:PropertyValue
64 Ndd0fd21437be4f86a333a544ae88a291 schema:name dimensions_id
65 schema:value pub.1007302965
66 rdf:type schema:PropertyValue
67 Nddfdb712f1f340859ae2a8b4877f4e89 rdf:first N36a238a6350c4202a412846f812ad860
68 rdf:rest N2f6f9f8d49ba4cd5ba8c87e0ad4ef5b4
69 Nfbcadf5a6a994f60ac494cdc124fcd45 schema:familyName Ferrand
70 schema:givenName Miguel
71 rdf:type schema:Person
72 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
73 schema:name Psychology and Cognitive Sciences
74 rdf:type schema:DefinedTerm
75 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
76 schema:name Psychology
77 rdf:type schema:DefinedTerm
78 sg:person.01314217577.61 schema:affiliation https://www.grid.ac/institutes/grid.432019.d
79 schema:familyName Goebl
80 schema:givenName Werner
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01314217577.61
82 rdf:type schema:Person
83 sg:person.013641401431.40 schema:affiliation https://www.grid.ac/institutes/grid.432019.d
84 schema:familyName Widmer
85 schema:givenName Gerhard
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013641401431.40
87 rdf:type schema:Person
88 sg:person.0627135504.09 schema:affiliation https://www.grid.ac/institutes/grid.432019.d
89 schema:familyName Dixon
90 schema:givenName Simon
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627135504.09
92 rdf:type schema:Person
93 https://doi.org/10.1016/s0167-6393(98)00076-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021134317
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1076/jnmr.30.1.39.7119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032385808
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1080/09540099408915723 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019415480
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1121/1.421129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062372397
100 rdf:type schema:CreativeWork
101 https://doi.org/10.2307/3680012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070407479
102 rdf:type schema:CreativeWork
103 https://doi.org/10.2307/3680495 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070407845
104 rdf:type schema:CreativeWork
105 https://www.grid.ac/institutes/grid.432019.d schema:alternateName Austrian Research Institute for Artificial Intelligence
106 schema:name Austrian Research Institute for Artificial Intelligence, Schottengasse 3, A-1010 Vienna, Austria
107 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...