Towards Inductive Constraint Solving View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2001

AUTHORS

Slim Abdennadher , Christophe Rigotti

ABSTRACT

A difficulty that arises frequently when writing a constraint solver is to determine the constraint propagation and simplification algorithm. In previous work, different methods for automatic generation of propagation rules [5],[17],[3] and simplification rules [4] for constraints defined over finite domains have been proposed. In this paper, we present a method for generating rule-based solvers for constraint predicates defined by means of a constraint logic program, even when the constraint domain is infinite. This approach can be seen as a concrete step towards Inductive Constraint Solving. More... »

PAGES

31-45

References to SciGraph publications

Book

TITLE

Principles and Practice of Constraint Programming — CP 2001

ISBN

978-3-540-42863-3
978-3-540-45578-3

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/3-540-45578-7_3

DOI

http://dx.doi.org/10.1007/3-540-45578-7_3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1019972995


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ludwig Maximilian University of Munich", 
          "id": "https://www.grid.ac/institutes/grid.5252.0", 
          "name": [
            "Computer Science Department, University of Munich, Oettingenstr. 67, 80538\u00a0M\u00fcnchen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Abdennadher", 
        "givenName": "Slim", 
        "id": "sg:person.010445445574.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010445445574.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut National des Sciences Appliqu\u00e9es de Lyon", 
          "id": "https://www.grid.ac/institutes/grid.15399.37", 
          "name": [
            "Laboratoire d\u2019Ing\u00e9nierie des Syst\u00e8mes d\u2019Information, B\u00e2timent 501, INSA Lyon, 69621\u00a0Villeurbanne Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rigotti", 
        "givenName": "Christophe", 
        "id": "sg:person.016577712467.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016577712467.20"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0743-1066(98)10005-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000275719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0743-1066(94)90035-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002893202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0743-1066(94)90033-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004885944"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0743-1066(98)10006-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014830724"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03037230", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020684666", 
          "https://doi.org/10.1007/bf03037230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03037230", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020684666", 
          "https://doi.org/10.1007/bf03037230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0743-1066(93)90047-k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033004420"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2001", 
    "datePublishedReg": "2001-01-01", 
    "description": "A difficulty that arises frequently when writing a constraint solver is to determine the constraint propagation and simplification algorithm. In previous work, different methods for automatic generation of propagation rules [5],[17],[3] and simplification rules [4] for constraints defined over finite domains have been proposed. In this paper, we present a method for generating rule-based solvers for constraint predicates defined by means of a constraint logic program, even when the constraint domain is infinite. This approach can be seen as a concrete step towards Inductive Constraint Solving.", 
    "editor": [
      {
        "familyName": "Walsh", 
        "givenName": "Toby", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/3-540-45578-7_3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-540-42863-3", 
        "978-3-540-45578-3"
      ], 
      "name": "Principles and Practice of Constraint Programming \u2014 CP 2001", 
      "type": "Book"
    }, 
    "name": "Towards Inductive Constraint Solving", 
    "pagination": "31-45", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/3-540-45578-7_3"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5f2a156d49ff8ee91415c80146dbd291b6062588f40e8b188822901ab4817bbd"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1019972995"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/3-540-45578-7_3", 
      "https://app.dimensions.ai/details/publication/pub.1019972995"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T19:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000255.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/3-540-45578-7_3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-540-45578-7_3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-540-45578-7_3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-540-45578-7_3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-540-45578-7_3'


 

This table displays all metadata directly associated to this object as RDF triples.

94 TRIPLES      23 PREDICATES      33 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/3-540-45578-7_3 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nad5da0829ac448ffa369dff9b05277b8
4 schema:citation sg:pub.10.1007/bf03037230
5 https://doi.org/10.1016/0743-1066(93)90047-k
6 https://doi.org/10.1016/0743-1066(94)90033-7
7 https://doi.org/10.1016/0743-1066(94)90035-3
8 https://doi.org/10.1016/s0743-1066(98)10005-5
9 https://doi.org/10.1016/s0743-1066(98)10006-7
10 schema:datePublished 2001
11 schema:datePublishedReg 2001-01-01
12 schema:description A difficulty that arises frequently when writing a constraint solver is to determine the constraint propagation and simplification algorithm. In previous work, different methods for automatic generation of propagation rules [5],[17],[3] and simplification rules [4] for constraints defined over finite domains have been proposed. In this paper, we present a method for generating rule-based solvers for constraint predicates defined by means of a constraint logic program, even when the constraint domain is infinite. This approach can be seen as a concrete step towards Inductive Constraint Solving.
13 schema:editor Nf173175b59b44b13aad71f2143936daf
14 schema:genre chapter
15 schema:inLanguage en
16 schema:isAccessibleForFree true
17 schema:isPartOf N785f5f200d18429191376401a0e67246
18 schema:name Towards Inductive Constraint Solving
19 schema:pagination 31-45
20 schema:productId N56c31a0e6c8d487db4f59bd1db5b2240
21 N88f6c06aa40149e992fac669e056ed9f
22 Nbb6cfa12e7244b0a8da1bfc319fa6dd0
23 schema:publisher Ndd57cef1c8c048eeb2ff953877db925c
24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019972995
25 https://doi.org/10.1007/3-540-45578-7_3
26 schema:sdDatePublished 2019-04-15T19:08
27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
28 schema:sdPublisher Nec331e985b544d37a23ee4d92c500eb1
29 schema:url http://link.springer.com/10.1007/3-540-45578-7_3
30 sgo:license sg:explorer/license/
31 sgo:sdDataset chapters
32 rdf:type schema:Chapter
33 N1ef0556b0e714153b54b2ee1f623aa62 schema:familyName Walsh
34 schema:givenName Toby
35 rdf:type schema:Person
36 N56c31a0e6c8d487db4f59bd1db5b2240 schema:name dimensions_id
37 schema:value pub.1019972995
38 rdf:type schema:PropertyValue
39 N785f5f200d18429191376401a0e67246 schema:isbn 978-3-540-42863-3
40 978-3-540-45578-3
41 schema:name Principles and Practice of Constraint Programming — CP 2001
42 rdf:type schema:Book
43 N88f6c06aa40149e992fac669e056ed9f schema:name doi
44 schema:value 10.1007/3-540-45578-7_3
45 rdf:type schema:PropertyValue
46 Nad5da0829ac448ffa369dff9b05277b8 rdf:first sg:person.010445445574.13
47 rdf:rest Nea9bd4eeec0d4379801e3f01e5a6221c
48 Nbb6cfa12e7244b0a8da1bfc319fa6dd0 schema:name readcube_id
49 schema:value 5f2a156d49ff8ee91415c80146dbd291b6062588f40e8b188822901ab4817bbd
50 rdf:type schema:PropertyValue
51 Ndd57cef1c8c048eeb2ff953877db925c schema:location Berlin, Heidelberg
52 schema:name Springer Berlin Heidelberg
53 rdf:type schema:Organisation
54 Nea9bd4eeec0d4379801e3f01e5a6221c rdf:first sg:person.016577712467.20
55 rdf:rest rdf:nil
56 Nec331e985b544d37a23ee4d92c500eb1 schema:name Springer Nature - SN SciGraph project
57 rdf:type schema:Organization
58 Nf173175b59b44b13aad71f2143936daf rdf:first N1ef0556b0e714153b54b2ee1f623aa62
59 rdf:rest rdf:nil
60 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
61 schema:name Information and Computing Sciences
62 rdf:type schema:DefinedTerm
63 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
64 schema:name Artificial Intelligence and Image Processing
65 rdf:type schema:DefinedTerm
66 sg:person.010445445574.13 schema:affiliation https://www.grid.ac/institutes/grid.5252.0
67 schema:familyName Abdennadher
68 schema:givenName Slim
69 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010445445574.13
70 rdf:type schema:Person
71 sg:person.016577712467.20 schema:affiliation https://www.grid.ac/institutes/grid.15399.37
72 schema:familyName Rigotti
73 schema:givenName Christophe
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016577712467.20
75 rdf:type schema:Person
76 sg:pub.10.1007/bf03037230 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020684666
77 https://doi.org/10.1007/bf03037230
78 rdf:type schema:CreativeWork
79 https://doi.org/10.1016/0743-1066(93)90047-k schema:sameAs https://app.dimensions.ai/details/publication/pub.1033004420
80 rdf:type schema:CreativeWork
81 https://doi.org/10.1016/0743-1066(94)90033-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004885944
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1016/0743-1066(94)90035-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002893202
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1016/s0743-1066(98)10005-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000275719
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1016/s0743-1066(98)10006-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014830724
88 rdf:type schema:CreativeWork
89 https://www.grid.ac/institutes/grid.15399.37 schema:alternateName Institut National des Sciences Appliquées de Lyon
90 schema:name Laboratoire d’Ingénierie des Systèmes d’Information, Bâtiment 501, INSA Lyon, 69621 Villeurbanne Cedex, France
91 rdf:type schema:Organization
92 https://www.grid.ac/institutes/grid.5252.0 schema:alternateName Ludwig Maximilian University of Munich
93 schema:name Computer Science Department, University of Munich, Oettingenstr. 67, 80538 München, Germany
94 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...