Modeling Agent Systems by Bayesian Belief Networks View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2001-10-26

AUTHORS

Yun Peng

ABSTRACT

Development of multi-agent system (MAS) applications is often complicated by the fact that agents operate in a dynamic, uncertain world. Uncertainty may stem from noisy external data, inexact reasoning such as abduction, and actions by individual agents. Uncertainty can be compounded and amplified when propagated through the agent system. Moreover, some agents may become disconnected from the rest of the system by temporary or permanent disability of these agents or their communication channel, resulting in incomplete/inconsistent system states. How should we represent individual agents acting in such an uncertain environment, and more importantly, how can we predict how the MAS as a whole will evolve as the result of uncertain inter-agent interactions? These questions cannot be correctly answered without a correct agent interaction model based on a solid mathematical foundation. More... »

PAGES

321-322

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/3-540-45484-5_31

DOI

http://dx.doi.org/10.1007/3-540-45484-5_31

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1038782217


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, Baltimore", 
          "id": "http://www.grid.ac/institutes/grid.266673.0", 
          "name": [
            "Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, Baltimore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Peng", 
        "givenName": "Yun", 
        "id": "sg:person.01136741416.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136741416.72"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2001-10-26", 
    "datePublishedReg": "2001-10-26", 
    "description": "Development of multi-agent system (MAS) applications is often complicated by the fact that agents operate in a dynamic, uncertain world. Uncertainty may stem from noisy external data, inexact reasoning such as abduction, and actions by individual agents. Uncertainty can be compounded and amplified when propagated through the agent system. Moreover, some agents may become disconnected from the rest of the system by temporary or permanent disability of these agents or their communication channel, resulting in incomplete/inconsistent system states. How should we represent individual agents acting in such an uncertain environment, and more importantly, how can we predict how the MAS as a whole will evolve as the result of uncertain inter-agent interactions? These questions cannot be correctly answered without a correct agent interaction model based on a solid mathematical foundation.", 
    "editor": [
      {
        "familyName": "Rash", 
        "givenName": "James L.", 
        "type": "Person"
      }, 
      {
        "familyName": "Truszkowski", 
        "givenName": "Walt", 
        "type": "Person"
      }, 
      {
        "familyName": "Hinchey", 
        "givenName": "Michael G.", 
        "type": "Person"
      }, 
      {
        "familyName": "Rouff", 
        "givenName": "Christopher A.", 
        "type": "Person"
      }, 
      {
        "familyName": "Gordon", 
        "givenName": "Diana", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/3-540-45484-5_31", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-42716-2", 
        "978-3-540-45484-7"
      ], 
      "name": "Formal Approaches to Agent-Based Systems", 
      "type": "Book"
    }, 
    "keywords": [
      "agent system", 
      "multi-agent system applications", 
      "agent interaction model", 
      "inconsistent system states", 
      "individual agents", 
      "inter-agent interactions", 
      "solid mathematical foundation", 
      "Bayesian belief networks", 
      "belief network", 
      "communication channels", 
      "external data", 
      "uncertain environment", 
      "system applications", 
      "mathematical foundation", 
      "system state", 
      "interaction model", 
      "system", 
      "network", 
      "reasoning", 
      "uncertain world", 
      "MAS", 
      "uncertainty", 
      "environment", 
      "applications", 
      "model", 
      "foundation", 
      "world", 
      "data", 
      "channels", 
      "agents", 
      "development", 
      "state", 
      "results", 
      "fact", 
      "whole", 
      "interaction", 
      "questions", 
      "action", 
      "abduction", 
      "rest", 
      "disability", 
      "permanent disability"
    ], 
    "name": "Modeling Agent Systems by Bayesian Belief Networks", 
    "pagination": "321-322", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1038782217"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/3-540-45484-5_31"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/3-540-45484-5_31", 
      "https://app.dimensions.ai/details/publication/pub.1038782217"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-06-01T22:33", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/chapter/chapter_385.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/3-540-45484-5_31"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-540-45484-5_31'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-540-45484-5_31'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-540-45484-5_31'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-540-45484-5_31'


 

This table displays all metadata directly associated to this object as RDF triples.

122 TRIPLES      23 PREDICATES      67 URIs      60 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/3-540-45484-5_31 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Na319c20ce7174ac7979b9722c1cb351f
4 schema:datePublished 2001-10-26
5 schema:datePublishedReg 2001-10-26
6 schema:description Development of multi-agent system (MAS) applications is often complicated by the fact that agents operate in a dynamic, uncertain world. Uncertainty may stem from noisy external data, inexact reasoning such as abduction, and actions by individual agents. Uncertainty can be compounded and amplified when propagated through the agent system. Moreover, some agents may become disconnected from the rest of the system by temporary or permanent disability of these agents or their communication channel, resulting in incomplete/inconsistent system states. How should we represent individual agents acting in such an uncertain environment, and more importantly, how can we predict how the MAS as a whole will evolve as the result of uncertain inter-agent interactions? These questions cannot be correctly answered without a correct agent interaction model based on a solid mathematical foundation.
7 schema:editor N48bc1da87da4479b880af3cb69055761
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Nc3cd0b9e390943e4a81ae694574e387e
12 schema:keywords Bayesian belief networks
13 MAS
14 abduction
15 action
16 agent interaction model
17 agent system
18 agents
19 applications
20 belief network
21 channels
22 communication channels
23 data
24 development
25 disability
26 environment
27 external data
28 fact
29 foundation
30 inconsistent system states
31 individual agents
32 inter-agent interactions
33 interaction
34 interaction model
35 mathematical foundation
36 model
37 multi-agent system applications
38 network
39 permanent disability
40 questions
41 reasoning
42 rest
43 results
44 solid mathematical foundation
45 state
46 system
47 system applications
48 system state
49 uncertain environment
50 uncertain world
51 uncertainty
52 whole
53 world
54 schema:name Modeling Agent Systems by Bayesian Belief Networks
55 schema:pagination 321-322
56 schema:productId N742dec3a4aee42fb99d17cd5766a63b3
57 N94e8edcd97c843c4aee689e452ba4c5b
58 schema:publisher N6c719927a34c40a88aca3e481453e92e
59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038782217
60 https://doi.org/10.1007/3-540-45484-5_31
61 schema:sdDatePublished 2022-06-01T22:33
62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
63 schema:sdPublisher N1833add8996a4e808a5c370eb2f9ee7f
64 schema:url https://doi.org/10.1007/3-540-45484-5_31
65 sgo:license sg:explorer/license/
66 sgo:sdDataset chapters
67 rdf:type schema:Chapter
68 N050a753e8bad4ab6b682bb8a0bf121ce schema:familyName Hinchey
69 schema:givenName Michael G.
70 rdf:type schema:Person
71 N10419ef7fbb74ad885a167bcfd1f0ed9 rdf:first N1eb9e33d3f0040e893165c9493bb2e88
72 rdf:rest N8ec79ca7aa0b42c593323a436fd71ad5
73 N1833add8996a4e808a5c370eb2f9ee7f schema:name Springer Nature - SN SciGraph project
74 rdf:type schema:Organization
75 N1eb9e33d3f0040e893165c9493bb2e88 schema:familyName Rouff
76 schema:givenName Christopher A.
77 rdf:type schema:Person
78 N48bc1da87da4479b880af3cb69055761 rdf:first N67245ce2dd42495183381bf5063e73fc
79 rdf:rest N82dfa70b647e4f8380982af6f425d6c4
80 N5ae88fd20f5a496b9eb194a3ddfa1d86 rdf:first N050a753e8bad4ab6b682bb8a0bf121ce
81 rdf:rest N10419ef7fbb74ad885a167bcfd1f0ed9
82 N621d4494619a486dab0af650e055d37e schema:familyName Truszkowski
83 schema:givenName Walt
84 rdf:type schema:Person
85 N67245ce2dd42495183381bf5063e73fc schema:familyName Rash
86 schema:givenName James L.
87 rdf:type schema:Person
88 N6c719927a34c40a88aca3e481453e92e schema:name Springer Nature
89 rdf:type schema:Organisation
90 N742dec3a4aee42fb99d17cd5766a63b3 schema:name doi
91 schema:value 10.1007/3-540-45484-5_31
92 rdf:type schema:PropertyValue
93 N82dfa70b647e4f8380982af6f425d6c4 rdf:first N621d4494619a486dab0af650e055d37e
94 rdf:rest N5ae88fd20f5a496b9eb194a3ddfa1d86
95 N8ec79ca7aa0b42c593323a436fd71ad5 rdf:first Na5acbdb250304593915f35d4dc8d4bee
96 rdf:rest rdf:nil
97 N94e8edcd97c843c4aee689e452ba4c5b schema:name dimensions_id
98 schema:value pub.1038782217
99 rdf:type schema:PropertyValue
100 Na319c20ce7174ac7979b9722c1cb351f rdf:first sg:person.01136741416.72
101 rdf:rest rdf:nil
102 Na5acbdb250304593915f35d4dc8d4bee schema:familyName Gordon
103 schema:givenName Diana
104 rdf:type schema:Person
105 Nc3cd0b9e390943e4a81ae694574e387e schema:isbn 978-3-540-42716-2
106 978-3-540-45484-7
107 schema:name Formal Approaches to Agent-Based Systems
108 rdf:type schema:Book
109 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
110 schema:name Information and Computing Sciences
111 rdf:type schema:DefinedTerm
112 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
113 schema:name Artificial Intelligence and Image Processing
114 rdf:type schema:DefinedTerm
115 sg:person.01136741416.72 schema:affiliation grid-institutes:grid.266673.0
116 schema:familyName Peng
117 schema:givenName Yun
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136741416.72
119 rdf:type schema:Person
120 grid-institutes:grid.266673.0 schema:alternateName Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, Baltimore
121 schema:name Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, Baltimore
122 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...