2001-10-26
AUTHORS ABSTRACTDevelopment of multi-agent system (MAS) applications is often complicated by the fact that agents operate in a dynamic, uncertain world. Uncertainty may stem from noisy external data, inexact reasoning such as abduction, and actions by individual agents. Uncertainty can be compounded and amplified when propagated through the agent system. Moreover, some agents may become disconnected from the rest of the system by temporary or permanent disability of these agents or their communication channel, resulting in incomplete/inconsistent system states. How should we represent individual agents acting in such an uncertain environment, and more importantly, how can we predict how the MAS as a whole will evolve as the result of uncertain inter-agent interactions? These questions cannot be correctly answered without a correct agent interaction model based on a solid mathematical foundation. More... »
PAGES321-322
Formal Approaches to Agent-Based Systems
ISBN
978-3-540-42716-2
978-3-540-45484-7
http://scigraph.springernature.com/pub.10.1007/3-540-45484-5_31
DOIhttp://dx.doi.org/10.1007/3-540-45484-5_31
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1038782217
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Artificial Intelligence and Image Processing",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, Baltimore",
"id": "http://www.grid.ac/institutes/grid.266673.0",
"name": [
"Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, Baltimore"
],
"type": "Organization"
},
"familyName": "Peng",
"givenName": "Yun",
"id": "sg:person.01136741416.72",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136741416.72"
],
"type": "Person"
}
],
"datePublished": "2001-10-26",
"datePublishedReg": "2001-10-26",
"description": "Development of multi-agent system (MAS) applications is often complicated by the fact that agents operate in a dynamic, uncertain world. Uncertainty may stem from noisy external data, inexact reasoning such as abduction, and actions by individual agents. Uncertainty can be compounded and amplified when propagated through the agent system. Moreover, some agents may become disconnected from the rest of the system by temporary or permanent disability of these agents or their communication channel, resulting in incomplete/inconsistent system states. How should we represent individual agents acting in such an uncertain environment, and more importantly, how can we predict how the MAS as a whole will evolve as the result of uncertain inter-agent interactions? These questions cannot be correctly answered without a correct agent interaction model based on a solid mathematical foundation.",
"editor": [
{
"familyName": "Rash",
"givenName": "James L.",
"type": "Person"
},
{
"familyName": "Truszkowski",
"givenName": "Walt",
"type": "Person"
},
{
"familyName": "Hinchey",
"givenName": "Michael G.",
"type": "Person"
},
{
"familyName": "Rouff",
"givenName": "Christopher A.",
"type": "Person"
},
{
"familyName": "Gordon",
"givenName": "Diana",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/3-540-45484-5_31",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-540-42716-2",
"978-3-540-45484-7"
],
"name": "Formal Approaches to Agent-Based Systems",
"type": "Book"
},
"keywords": [
"agent system",
"multi-agent system applications",
"agent interaction model",
"inconsistent system states",
"individual agents",
"inter-agent interactions",
"solid mathematical foundation",
"Bayesian belief networks",
"belief network",
"communication channels",
"external data",
"uncertain environment",
"system applications",
"mathematical foundation",
"system state",
"interaction model",
"system",
"network",
"reasoning",
"uncertain world",
"MAS",
"uncertainty",
"environment",
"applications",
"model",
"foundation",
"world",
"data",
"channels",
"agents",
"development",
"state",
"results",
"fact",
"whole",
"interaction",
"questions",
"action",
"abduction",
"rest",
"disability",
"permanent disability"
],
"name": "Modeling Agent Systems by Bayesian Belief Networks",
"pagination": "321-322",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1038782217"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/3-540-45484-5_31"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/3-540-45484-5_31",
"https://app.dimensions.ai/details/publication/pub.1038782217"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-06-01T22:33",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/chapter/chapter_385.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/3-540-45484-5_31"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-540-45484-5_31'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-540-45484-5_31'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-540-45484-5_31'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-540-45484-5_31'
This table displays all metadata directly associated to this object as RDF triples.
122 TRIPLES
23 PREDICATES
67 URIs
60 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/3-540-45484-5_31 | schema:about | anzsrc-for:08 |
2 | ″ | ″ | anzsrc-for:0801 |
3 | ″ | schema:author | Na319c20ce7174ac7979b9722c1cb351f |
4 | ″ | schema:datePublished | 2001-10-26 |
5 | ″ | schema:datePublishedReg | 2001-10-26 |
6 | ″ | schema:description | Development of multi-agent system (MAS) applications is often complicated by the fact that agents operate in a dynamic, uncertain world. Uncertainty may stem from noisy external data, inexact reasoning such as abduction, and actions by individual agents. Uncertainty can be compounded and amplified when propagated through the agent system. Moreover, some agents may become disconnected from the rest of the system by temporary or permanent disability of these agents or their communication channel, resulting in incomplete/inconsistent system states. How should we represent individual agents acting in such an uncertain environment, and more importantly, how can we predict how the MAS as a whole will evolve as the result of uncertain inter-agent interactions? These questions cannot be correctly answered without a correct agent interaction model based on a solid mathematical foundation. |
7 | ″ | schema:editor | N48bc1da87da4479b880af3cb69055761 |
8 | ″ | schema:genre | chapter |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | false |
11 | ″ | schema:isPartOf | Nc3cd0b9e390943e4a81ae694574e387e |
12 | ″ | schema:keywords | Bayesian belief networks |
13 | ″ | ″ | MAS |
14 | ″ | ″ | abduction |
15 | ″ | ″ | action |
16 | ″ | ″ | agent interaction model |
17 | ″ | ″ | agent system |
18 | ″ | ″ | agents |
19 | ″ | ″ | applications |
20 | ″ | ″ | belief network |
21 | ″ | ″ | channels |
22 | ″ | ″ | communication channels |
23 | ″ | ″ | data |
24 | ″ | ″ | development |
25 | ″ | ″ | disability |
26 | ″ | ″ | environment |
27 | ″ | ″ | external data |
28 | ″ | ″ | fact |
29 | ″ | ″ | foundation |
30 | ″ | ″ | inconsistent system states |
31 | ″ | ″ | individual agents |
32 | ″ | ″ | inter-agent interactions |
33 | ″ | ″ | interaction |
34 | ″ | ″ | interaction model |
35 | ″ | ″ | mathematical foundation |
36 | ″ | ″ | model |
37 | ″ | ″ | multi-agent system applications |
38 | ″ | ″ | network |
39 | ″ | ″ | permanent disability |
40 | ″ | ″ | questions |
41 | ″ | ″ | reasoning |
42 | ″ | ″ | rest |
43 | ″ | ″ | results |
44 | ″ | ″ | solid mathematical foundation |
45 | ″ | ″ | state |
46 | ″ | ″ | system |
47 | ″ | ″ | system applications |
48 | ″ | ″ | system state |
49 | ″ | ″ | uncertain environment |
50 | ″ | ″ | uncertain world |
51 | ″ | ″ | uncertainty |
52 | ″ | ″ | whole |
53 | ″ | ″ | world |
54 | ″ | schema:name | Modeling Agent Systems by Bayesian Belief Networks |
55 | ″ | schema:pagination | 321-322 |
56 | ″ | schema:productId | N742dec3a4aee42fb99d17cd5766a63b3 |
57 | ″ | ″ | N94e8edcd97c843c4aee689e452ba4c5b |
58 | ″ | schema:publisher | N6c719927a34c40a88aca3e481453e92e |
59 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1038782217 |
60 | ″ | ″ | https://doi.org/10.1007/3-540-45484-5_31 |
61 | ″ | schema:sdDatePublished | 2022-06-01T22:33 |
62 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
63 | ″ | schema:sdPublisher | N1833add8996a4e808a5c370eb2f9ee7f |
64 | ″ | schema:url | https://doi.org/10.1007/3-540-45484-5_31 |
65 | ″ | sgo:license | sg:explorer/license/ |
66 | ″ | sgo:sdDataset | chapters |
67 | ″ | rdf:type | schema:Chapter |
68 | N050a753e8bad4ab6b682bb8a0bf121ce | schema:familyName | Hinchey |
69 | ″ | schema:givenName | Michael G. |
70 | ″ | rdf:type | schema:Person |
71 | N10419ef7fbb74ad885a167bcfd1f0ed9 | rdf:first | N1eb9e33d3f0040e893165c9493bb2e88 |
72 | ″ | rdf:rest | N8ec79ca7aa0b42c593323a436fd71ad5 |
73 | N1833add8996a4e808a5c370eb2f9ee7f | schema:name | Springer Nature - SN SciGraph project |
74 | ″ | rdf:type | schema:Organization |
75 | N1eb9e33d3f0040e893165c9493bb2e88 | schema:familyName | Rouff |
76 | ″ | schema:givenName | Christopher A. |
77 | ″ | rdf:type | schema:Person |
78 | N48bc1da87da4479b880af3cb69055761 | rdf:first | N67245ce2dd42495183381bf5063e73fc |
79 | ″ | rdf:rest | N82dfa70b647e4f8380982af6f425d6c4 |
80 | N5ae88fd20f5a496b9eb194a3ddfa1d86 | rdf:first | N050a753e8bad4ab6b682bb8a0bf121ce |
81 | ″ | rdf:rest | N10419ef7fbb74ad885a167bcfd1f0ed9 |
82 | N621d4494619a486dab0af650e055d37e | schema:familyName | Truszkowski |
83 | ″ | schema:givenName | Walt |
84 | ″ | rdf:type | schema:Person |
85 | N67245ce2dd42495183381bf5063e73fc | schema:familyName | Rash |
86 | ″ | schema:givenName | James L. |
87 | ″ | rdf:type | schema:Person |
88 | N6c719927a34c40a88aca3e481453e92e | schema:name | Springer Nature |
89 | ″ | rdf:type | schema:Organisation |
90 | N742dec3a4aee42fb99d17cd5766a63b3 | schema:name | doi |
91 | ″ | schema:value | 10.1007/3-540-45484-5_31 |
92 | ″ | rdf:type | schema:PropertyValue |
93 | N82dfa70b647e4f8380982af6f425d6c4 | rdf:first | N621d4494619a486dab0af650e055d37e |
94 | ″ | rdf:rest | N5ae88fd20f5a496b9eb194a3ddfa1d86 |
95 | N8ec79ca7aa0b42c593323a436fd71ad5 | rdf:first | Na5acbdb250304593915f35d4dc8d4bee |
96 | ″ | rdf:rest | rdf:nil |
97 | N94e8edcd97c843c4aee689e452ba4c5b | schema:name | dimensions_id |
98 | ″ | schema:value | pub.1038782217 |
99 | ″ | rdf:type | schema:PropertyValue |
100 | Na319c20ce7174ac7979b9722c1cb351f | rdf:first | sg:person.01136741416.72 |
101 | ″ | rdf:rest | rdf:nil |
102 | Na5acbdb250304593915f35d4dc8d4bee | schema:familyName | Gordon |
103 | ″ | schema:givenName | Diana |
104 | ″ | rdf:type | schema:Person |
105 | Nc3cd0b9e390943e4a81ae694574e387e | schema:isbn | 978-3-540-42716-2 |
106 | ″ | ″ | 978-3-540-45484-7 |
107 | ″ | schema:name | Formal Approaches to Agent-Based Systems |
108 | ″ | rdf:type | schema:Book |
109 | anzsrc-for:08 | schema:inDefinedTermSet | anzsrc-for: |
110 | ″ | schema:name | Information and Computing Sciences |
111 | ″ | rdf:type | schema:DefinedTerm |
112 | anzsrc-for:0801 | schema:inDefinedTermSet | anzsrc-for: |
113 | ″ | schema:name | Artificial Intelligence and Image Processing |
114 | ″ | rdf:type | schema:DefinedTerm |
115 | sg:person.01136741416.72 | schema:affiliation | grid-institutes:grid.266673.0 |
116 | ″ | schema:familyName | Peng |
117 | ″ | schema:givenName | Yun |
118 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136741416.72 |
119 | ″ | rdf:type | schema:Person |
120 | grid-institutes:grid.266673.0 | schema:alternateName | Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, Baltimore |
121 | ″ | schema:name | Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, Baltimore |
122 | ″ | rdf:type | schema:Organization |