Active Vision from Multiple Cues View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2000

AUTHORS

Henrik Christensen , Jan-Olof Eklundh

ABSTRACT

Active vision involves processes for stabilisation and fixation on objects of interest. To provide robust performance for such processes it is necessary to consider integration and processing as closely coupled processes. In this paper we discuss methods for integration of cues and present a unified architecture for active vision. The performance of the approach is illustrated by a few examples. More... »

PAGES

209-216

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/3-540-45482-9_20

DOI

http://dx.doi.org/10.1007/3-540-45482-9_20

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1048349017


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Computational Vision and Active Perception, Numerical Analysis and Computational Science, Royal Institute of Technology, SE-100 44, Stockholm, Sweden", 
          "id": "http://www.grid.ac/institutes/grid.5037.1", 
          "name": [
            "Computational Vision and Active Perception, Numerical Analysis and Computational Science, Royal Institute of Technology, SE-100 44, Stockholm, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Christensen", 
        "givenName": "Henrik", 
        "id": "sg:person.01365426624.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01365426624.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Computational Vision and Active Perception, Numerical Analysis and Computational Science, Royal Institute of Technology, SE-100 44, Stockholm, Sweden", 
          "id": "http://www.grid.ac/institutes/grid.5037.1", 
          "name": [
            "Computational Vision and Active Perception, Numerical Analysis and Computational Science, Royal Institute of Technology, SE-100 44, Stockholm, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Eklundh", 
        "givenName": "Jan-Olof", 
        "id": "sg:person.014400652155.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014400652155.17"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2000", 
    "datePublishedReg": "2000-01-01", 
    "description": "Active vision involves processes for stabilisation and fixation on objects of interest. To provide robust performance for such processes it is necessary to consider integration and processing as closely coupled processes. In this paper we discuss methods for integration of cues and present a unified architecture for active vision. The performance of the approach is illustrated by a few examples.", 
    "editor": [
      {
        "familyName": "Lee", 
        "givenName": "Seong-Whan", 
        "type": "Person"
      }, 
      {
        "familyName": "B\u00fclthoff", 
        "givenName": "Heinrich H.", 
        "type": "Person"
      }, 
      {
        "familyName": "Poggio", 
        "givenName": "Tomaso", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/3-540-45482-9_20", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-67560-0", 
        "978-3-540-45482-3"
      ], 
      "name": "Biologically Motivated Computer Vision", 
      "type": "Book"
    }, 
    "keywords": [
      "robust performance", 
      "active vision", 
      "performance", 
      "process", 
      "unified architecture", 
      "object of interest", 
      "such processes", 
      "integration", 
      "processing", 
      "integration of cues", 
      "method", 
      "multiple cues", 
      "stabilisation", 
      "architecture", 
      "cues", 
      "example", 
      "approach", 
      "vision", 
      "objects", 
      "interest", 
      "fixation", 
      "paper"
    ], 
    "name": "Active Vision from Multiple Cues", 
    "pagination": "209-216", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1048349017"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/3-540-45482-9_20"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/3-540-45482-9_20", 
      "https://app.dimensions.ai/details/publication/pub.1048349017"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-11-24T21:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/chapter/chapter_266.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/3-540-45482-9_20"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-540-45482-9_20'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-540-45482-9_20'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-540-45482-9_20'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-540-45482-9_20'


 

This table displays all metadata directly associated to this object as RDF triples.

98 TRIPLES      22 PREDICATES      47 URIs      40 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/3-540-45482-9_20 schema:about anzsrc-for:17
2 anzsrc-for:1701
3 schema:author N70351c6d908847e0a243790d288dbf9d
4 schema:datePublished 2000
5 schema:datePublishedReg 2000-01-01
6 schema:description Active vision involves processes for stabilisation and fixation on objects of interest. To provide robust performance for such processes it is necessary to consider integration and processing as closely coupled processes. In this paper we discuss methods for integration of cues and present a unified architecture for active vision. The performance of the approach is illustrated by a few examples.
7 schema:editor N506c75c694924ca68661c471cd76a649
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf Na3e7ad03ba0840cdb713ed74e9643348
11 schema:keywords active vision
12 approach
13 architecture
14 cues
15 example
16 fixation
17 integration
18 integration of cues
19 interest
20 method
21 multiple cues
22 object of interest
23 objects
24 paper
25 performance
26 process
27 processing
28 robust performance
29 stabilisation
30 such processes
31 unified architecture
32 vision
33 schema:name Active Vision from Multiple Cues
34 schema:pagination 209-216
35 schema:productId N28ab69fd7bd14909a805d06f6cd67193
36 N313db9587f3749729d5ad32855dfb748
37 schema:publisher Nbd26b1664b8f43e2a90ecbc1453fde24
38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048349017
39 https://doi.org/10.1007/3-540-45482-9_20
40 schema:sdDatePublished 2022-11-24T21:14
41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
42 schema:sdPublisher N520939a6a9d842ed98e7b4d9f55b86c9
43 schema:url https://doi.org/10.1007/3-540-45482-9_20
44 sgo:license sg:explorer/license/
45 sgo:sdDataset chapters
46 rdf:type schema:Chapter
47 N11edf6cb3de745babff51b2a6cfe69b5 schema:familyName Poggio
48 schema:givenName Tomaso
49 rdf:type schema:Person
50 N28ab69fd7bd14909a805d06f6cd67193 schema:name doi
51 schema:value 10.1007/3-540-45482-9_20
52 rdf:type schema:PropertyValue
53 N313db9587f3749729d5ad32855dfb748 schema:name dimensions_id
54 schema:value pub.1048349017
55 rdf:type schema:PropertyValue
56 N43f51f5c021344c0845e5bc095ca67b9 schema:familyName Bülthoff
57 schema:givenName Heinrich H.
58 rdf:type schema:Person
59 N506c75c694924ca68661c471cd76a649 rdf:first N76a274e450e2494e94b399d03c79169c
60 rdf:rest Ne2ce025d65254c19a79e0fb8a4d81b0e
61 N520939a6a9d842ed98e7b4d9f55b86c9 schema:name Springer Nature - SN SciGraph project
62 rdf:type schema:Organization
63 N520bc3914f75418bae792a81b51cf9fb rdf:first sg:person.014400652155.17
64 rdf:rest rdf:nil
65 N70351c6d908847e0a243790d288dbf9d rdf:first sg:person.01365426624.74
66 rdf:rest N520bc3914f75418bae792a81b51cf9fb
67 N76a274e450e2494e94b399d03c79169c schema:familyName Lee
68 schema:givenName Seong-Whan
69 rdf:type schema:Person
70 N85377a80f8e842ce934484f49455df8f rdf:first N11edf6cb3de745babff51b2a6cfe69b5
71 rdf:rest rdf:nil
72 Na3e7ad03ba0840cdb713ed74e9643348 schema:isbn 978-3-540-45482-3
73 978-3-540-67560-0
74 schema:name Biologically Motivated Computer Vision
75 rdf:type schema:Book
76 Nbd26b1664b8f43e2a90ecbc1453fde24 schema:name Springer Nature
77 rdf:type schema:Organisation
78 Ne2ce025d65254c19a79e0fb8a4d81b0e rdf:first N43f51f5c021344c0845e5bc095ca67b9
79 rdf:rest N85377a80f8e842ce934484f49455df8f
80 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
81 schema:name Psychology and Cognitive Sciences
82 rdf:type schema:DefinedTerm
83 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
84 schema:name Psychology
85 rdf:type schema:DefinedTerm
86 sg:person.01365426624.74 schema:affiliation grid-institutes:grid.5037.1
87 schema:familyName Christensen
88 schema:givenName Henrik
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01365426624.74
90 rdf:type schema:Person
91 sg:person.014400652155.17 schema:affiliation grid-institutes:grid.5037.1
92 schema:familyName Eklundh
93 schema:givenName Jan-Olof
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014400652155.17
95 rdf:type schema:Person
96 grid-institutes:grid.5037.1 schema:alternateName Computational Vision and Active Perception, Numerical Analysis and Computational Science, Royal Institute of Technology, SE-100 44, Stockholm, Sweden
97 schema:name Computational Vision and Active Perception, Numerical Analysis and Computational Science, Royal Institute of Technology, SE-100 44, Stockholm, Sweden
98 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...