A Method for Evaluating the Performance of Content-Based Image Retrieval Systems Based on Subjectively Determined Similarity between Images View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2002

AUTHORS

John A. Black , Gamal Fahmy , Sethuraman Panchanathan

ABSTRACT

In recent years multimedia researchers have attempted to design content-based image retrieval systems. However, despite the development of these systems, the term “content” has still remained rather ill defined, and this has made the evaluation of such systems problematic. This paper proposes a method for the creation of a reference image set in which the similarity of each image pair is estimated by two independent methods — by the subjective evaluation of human observers, and by the use of “visual content words” as basis vectors that allow the multidimensional content of each image to be represented with a content vector. The similarity measure computed with these content vectors is shown to correlate with the subjective judgment of human observers, and thus provides both a more objective method for evaluating and expressing image content, and a possible path to automating the process of content-based indexing in the future. More... »

PAGES

356-366

Book

TITLE

Image and Video Retrieval

ISBN

978-3-540-43899-1
978-3-540-45479-3

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/3-540-45479-9_38

DOI

http://dx.doi.org/10.1007/3-540-45479-9_38

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1026053249


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Arizona State University", 
          "id": "https://www.grid.ac/institutes/grid.215654.1", 
          "name": [
            "Visual Computing and Communications Lab, Arizona State University, PO Box 5406, Tempe, AZ\u00a085287-5406, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Black", 
        "givenName": "John A.", 
        "id": "sg:person.014121544535.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014121544535.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Arizona State University", 
          "id": "https://www.grid.ac/institutes/grid.215654.1", 
          "name": [
            "Visual Computing and Communications Lab, Arizona State University, PO Box 5406, Tempe, AZ\u00a085287-5406, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fahmy", 
        "givenName": "Gamal", 
        "id": "sg:person.010027671351.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010027671351.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Arizona State University", 
          "id": "https://www.grid.ac/institutes/grid.215654.1", 
          "name": [
            "Visual Computing and Communications Lab, Arizona State University, PO Box 5406, Tempe, AZ\u00a085287-5406, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Panchanathan", 
        "givenName": "Sethuraman", 
        "id": "sg:person.010237427123.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010237427123.83"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1117/12.274545", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008799751"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.274546", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044914748"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ivl.2000.853848", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093460343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ivl.1998.694482", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094055339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ivl.2000.853846", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094073479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ivl.2000.853842", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094541151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccv.1999.790379", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094736069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ivl.1998.694520", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094768158"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2002", 
    "datePublishedReg": "2002-01-01", 
    "description": "In recent years multimedia researchers have attempted to design content-based image retrieval systems. However, despite the development of these systems, the term \u201ccontent\u201d has still remained rather ill defined, and this has made the evaluation of such systems problematic. This paper proposes a method for the creation of a reference image set in which the similarity of each image pair is estimated by two independent methods \u2014 by the subjective evaluation of human observers, and by the use of \u201cvisual content words\u201d as basis vectors that allow the multidimensional content of each image to be represented with a content vector. The similarity measure computed with these content vectors is shown to correlate with the subjective judgment of human observers, and thus provides both a more objective method for evaluating and expressing image content, and a possible path to automating the process of content-based indexing in the future.", 
    "editor": [
      {
        "familyName": "Lew", 
        "givenName": "Michael S.", 
        "type": "Person"
      }, 
      {
        "familyName": "Sebe", 
        "givenName": "Nicu", 
        "type": "Person"
      }, 
      {
        "familyName": "Eakins", 
        "givenName": "John P.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/3-540-45479-9_38", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-540-43899-1", 
        "978-3-540-45479-3"
      ], 
      "name": "Image and Video Retrieval", 
      "type": "Book"
    }, 
    "name": "A Method for Evaluating the Performance of Content-Based Image Retrieval Systems Based on Subjectively Determined Similarity between Images", 
    "pagination": "356-366", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/3-540-45479-9_38"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7c1dd87d5c72832b710167f9ab14bc605938b047e2e7508d4612c46c3558d0cb"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1026053249"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/3-540-45479-9_38", 
      "https://app.dimensions.ai/details/publication/pub.1026053249"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T19:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000044.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/3-540-45479-9_38"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-540-45479-9_38'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-540-45479-9_38'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-540-45479-9_38'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-540-45479-9_38'


 

This table displays all metadata directly associated to this object as RDF triples.

113 TRIPLES      23 PREDICATES      35 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/3-540-45479-9_38 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Ne6cd8814579a4ec98ac8252e4dc70a30
4 schema:citation https://doi.org/10.1109/iccv.1999.790379
5 https://doi.org/10.1109/ivl.1998.694482
6 https://doi.org/10.1109/ivl.1998.694520
7 https://doi.org/10.1109/ivl.2000.853842
8 https://doi.org/10.1109/ivl.2000.853846
9 https://doi.org/10.1109/ivl.2000.853848
10 https://doi.org/10.1117/12.274545
11 https://doi.org/10.1117/12.274546
12 schema:datePublished 2002
13 schema:datePublishedReg 2002-01-01
14 schema:description In recent years multimedia researchers have attempted to design content-based image retrieval systems. However, despite the development of these systems, the term “content” has still remained rather ill defined, and this has made the evaluation of such systems problematic. This paper proposes a method for the creation of a reference image set in which the similarity of each image pair is estimated by two independent methods — by the subjective evaluation of human observers, and by the use of “visual content words” as basis vectors that allow the multidimensional content of each image to be represented with a content vector. The similarity measure computed with these content vectors is shown to correlate with the subjective judgment of human observers, and thus provides both a more objective method for evaluating and expressing image content, and a possible path to automating the process of content-based indexing in the future.
15 schema:editor Nf9e6d44336bf413ab91b81f6115f0c31
16 schema:genre chapter
17 schema:inLanguage en
18 schema:isAccessibleForFree true
19 schema:isPartOf N0a6007feb97d4f828d62712c5dd0bbcc
20 schema:name A Method for Evaluating the Performance of Content-Based Image Retrieval Systems Based on Subjectively Determined Similarity between Images
21 schema:pagination 356-366
22 schema:productId N42c217868e114b5a94537a5fdfba09f0
23 Na3bfc08395814bd2a9a81702f4b7c861
24 Nad68c3b8fc484f71bf86722de92cc85a
25 schema:publisher N7cb4dc54d30240e8afe8b853b126e54c
26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026053249
27 https://doi.org/10.1007/3-540-45479-9_38
28 schema:sdDatePublished 2019-04-15T19:53
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher N69b4c8205f214702b42ee76805ba7574
31 schema:url http://link.springer.com/10.1007/3-540-45479-9_38
32 sgo:license sg:explorer/license/
33 sgo:sdDataset chapters
34 rdf:type schema:Chapter
35 N024c0bc8ee29436aa28719df60797036 schema:familyName Lew
36 schema:givenName Michael S.
37 rdf:type schema:Person
38 N0a6007feb97d4f828d62712c5dd0bbcc schema:isbn 978-3-540-43899-1
39 978-3-540-45479-3
40 schema:name Image and Video Retrieval
41 rdf:type schema:Book
42 N0ec64e7883a24293a9b965dc9eacd76b rdf:first N91ee311cf12c4a0981a2a2013e9d13cd
43 rdf:rest N6153aa86547f4f7497437d221bd6ff1e
44 N2b0bb3e4edb84526934ac1d9e273d14d rdf:first sg:person.010237427123.83
45 rdf:rest rdf:nil
46 N42c217868e114b5a94537a5fdfba09f0 schema:name readcube_id
47 schema:value 7c1dd87d5c72832b710167f9ab14bc605938b047e2e7508d4612c46c3558d0cb
48 rdf:type schema:PropertyValue
49 N6153aa86547f4f7497437d221bd6ff1e rdf:first Nb43248f393c54d0683e5aa402ef827a7
50 rdf:rest rdf:nil
51 N69b4c8205f214702b42ee76805ba7574 schema:name Springer Nature - SN SciGraph project
52 rdf:type schema:Organization
53 N7cb4dc54d30240e8afe8b853b126e54c schema:location Berlin, Heidelberg
54 schema:name Springer Berlin Heidelberg
55 rdf:type schema:Organisation
56 N91ee311cf12c4a0981a2a2013e9d13cd schema:familyName Sebe
57 schema:givenName Nicu
58 rdf:type schema:Person
59 Na3bfc08395814bd2a9a81702f4b7c861 schema:name dimensions_id
60 schema:value pub.1026053249
61 rdf:type schema:PropertyValue
62 Nad68c3b8fc484f71bf86722de92cc85a schema:name doi
63 schema:value 10.1007/3-540-45479-9_38
64 rdf:type schema:PropertyValue
65 Nb43248f393c54d0683e5aa402ef827a7 schema:familyName Eakins
66 schema:givenName John P.
67 rdf:type schema:Person
68 Ne4b03de2304749838dbed3c380f355fd rdf:first sg:person.010027671351.05
69 rdf:rest N2b0bb3e4edb84526934ac1d9e273d14d
70 Ne6cd8814579a4ec98ac8252e4dc70a30 rdf:first sg:person.014121544535.99
71 rdf:rest Ne4b03de2304749838dbed3c380f355fd
72 Nf9e6d44336bf413ab91b81f6115f0c31 rdf:first N024c0bc8ee29436aa28719df60797036
73 rdf:rest N0ec64e7883a24293a9b965dc9eacd76b
74 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
75 schema:name Information and Computing Sciences
76 rdf:type schema:DefinedTerm
77 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
78 schema:name Artificial Intelligence and Image Processing
79 rdf:type schema:DefinedTerm
80 sg:person.010027671351.05 schema:affiliation https://www.grid.ac/institutes/grid.215654.1
81 schema:familyName Fahmy
82 schema:givenName Gamal
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010027671351.05
84 rdf:type schema:Person
85 sg:person.010237427123.83 schema:affiliation https://www.grid.ac/institutes/grid.215654.1
86 schema:familyName Panchanathan
87 schema:givenName Sethuraman
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010237427123.83
89 rdf:type schema:Person
90 sg:person.014121544535.99 schema:affiliation https://www.grid.ac/institutes/grid.215654.1
91 schema:familyName Black
92 schema:givenName John A.
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014121544535.99
94 rdf:type schema:Person
95 https://doi.org/10.1109/iccv.1999.790379 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094736069
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1109/ivl.1998.694482 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094055339
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1109/ivl.1998.694520 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094768158
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1109/ivl.2000.853842 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094541151
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1109/ivl.2000.853846 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094073479
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1109/ivl.2000.853848 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093460343
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1117/12.274545 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008799751
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1117/12.274546 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044914748
110 rdf:type schema:CreativeWork
111 https://www.grid.ac/institutes/grid.215654.1 schema:alternateName Arizona State University
112 schema:name Visual Computing and Communications Lab, Arizona State University, PO Box 5406, Tempe, AZ 85287-5406, USA
113 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...