Deformable Organisms for Automatic Medical Image Analysis View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2001-10-05

AUTHORS

Ghassan Hamarneh , Tim McInerney , Demetri Terzopoulos

ABSTRACT

We introduce a new paradigm for automatic medical image analysis that adopts concepts from the field of Artificial Life. Our approach prescribes deformable organisms, autonomous agents whose objective is the segmentation and analysis of anatomical structures in medical images. A deformable organism is structured as a ‘muscle’-actuated ‘body’ whose behavior is controlled by a ‘brain’ that is capable of making both reactive and deliberate decisions. This intelligent deformable model possesses an ‘awareness’ of the segmentation process, which emerges from a conflux of perceived sensory data, an internal mental state, memorized knowledge, and a cognitive plan. We develop a class of deformable organisms using a medial representation of body morphology that facilitates a variety of controlled local deformations at multiple spatial scales. Specifically, we demonstrate a deformable ‘worm‘ organism that can overcome noise, incomplete edges, considerable anatomical variation, and occlusion in order to segment and label the corpus callosum in 2D mid-sagittal MR images of the brain. More... »

PAGES

66-76

Book

TITLE

Medical Image Computing and Computer-Assisted Intervention – MICCAI 2001

ISBN

978-3-540-42697-4
978-3-540-45468-7

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/3-540-45468-3_9

DOI

http://dx.doi.org/10.1007/3-540-45468-3_9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1014186133


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Dept. of Computer Science, University of Toronto, M5S 3H5, Toronto, Canada", 
          "id": "http://www.grid.ac/institutes/grid.17063.33", 
          "name": [
            "Dept. of Signals and Systems, Chalmers University of Technology, 41296, G\u00f6teborg, Sweden", 
            "Dept. of Computer Science, University of Toronto, M5S 3H5, Toronto, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hamarneh", 
        "givenName": "Ghassan", 
        "id": "sg:person.0642774233.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642774233.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dept. of Computer Science, University of Toronto, M5S 3H5, Toronto, Canada", 
          "id": "http://www.grid.ac/institutes/grid.17063.33", 
          "name": [
            "School of Computer Science, Ryerson University, M5B 2K3, Toronto, Canada", 
            "Dept. of Computer Science, University of Toronto, M5S 3H5, Toronto, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "McInerney", 
        "givenName": "Tim", 
        "id": "sg:person.010127567536.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010127567536.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dept. of Computer Science, University of Toronto, M5S 3H5, Toronto, Canada", 
          "id": "http://www.grid.ac/institutes/grid.17063.33", 
          "name": [
            "Courant Institute, New York University, 10003, New York, NY, USA", 
            "Dept. of Computer Science, University of Toronto, M5S 3H5, Toronto, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Terzopoulos", 
        "givenName": "Demetri", 
        "id": "sg:person.016347323445.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016347323445.35"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2001-10-05", 
    "datePublishedReg": "2001-10-05", 
    "description": "We introduce a new paradigm for automatic medical image analysis that adopts concepts from the field of Artificial Life. Our approach prescribes deformable organisms, autonomous agents whose objective is the segmentation and analysis of anatomical structures in medical images. A deformable organism is structured as a \u2018muscle\u2019-actuated \u2018body\u2019 whose behavior is controlled by a \u2018brain\u2019 that is capable of making both reactive and deliberate decisions. This intelligent deformable model possesses an \u2018awareness\u2019 of the segmentation process, which emerges from a conflux of perceived sensory data, an internal mental state, memorized knowledge, and a cognitive plan. We develop a class of deformable organisms using a medial representation of body morphology that facilitates a variety of controlled local deformations at multiple spatial scales. Specifically, we demonstrate a deformable \u2018worm\u2018 organism that can overcome noise, incomplete edges, considerable anatomical variation, and occlusion in order to segment and label the corpus callosum in 2D mid-sagittal MR images of the brain.", 
    "editor": [
      {
        "familyName": "Niessen", 
        "givenName": "Wiro J.", 
        "type": "Person"
      }, 
      {
        "familyName": "Viergever", 
        "givenName": "Max A.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/3-540-45468-3_9", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-540-42697-4", 
        "978-3-540-45468-7"
      ], 
      "name": "Medical Image Computing and Computer-Assisted Intervention \u2013 MICCAI 2001", 
      "type": "Book"
    }, 
    "keywords": [
      "automatic medical image analysis", 
      "medical image analysis", 
      "deformable organisms", 
      "image analysis", 
      "autonomous agents", 
      "medical images", 
      "segmentation process", 
      "memorized knowledge", 
      "incomplete edges", 
      "sensory data", 
      "deformable model", 
      "artificial life", 
      "new paradigm", 
      "mid-sagittal MR images", 
      "images", 
      "MR images", 
      "considerable anatomical variation", 
      "medial representation", 
      "anatomical structures", 
      "segmentation", 
      "paradigm", 
      "cognitive plans", 
      "representation", 
      "internal mental states", 
      "noise", 
      "conflux", 
      "local deformation", 
      "decisions", 
      "concept", 
      "knowledge", 
      "edge", 
      "order", 
      "model", 
      "class", 
      "mental states", 
      "data", 
      "plan", 
      "analysis", 
      "process", 
      "objective", 
      "variety", 
      "occlusion", 
      "field", 
      "awareness", 
      "state", 
      "deliberate decision", 
      "structure", 
      "agents", 
      "behavior", 
      "multiple spatial scales", 
      "body morphology", 
      "scale", 
      "worms", 
      "life", 
      "deformation", 
      "body", 
      "variation", 
      "spatial scales", 
      "morphology", 
      "anatomical variations", 
      "brain", 
      "approach", 
      "organisms", 
      "corpus callosum", 
      "callosum", 
      "intelligent deformable model"
    ], 
    "name": "Deformable Organisms for Automatic Medical Image Analysis", 
    "pagination": "66-76", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1014186133"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/3-540-45468-3_9"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/3-540-45468-3_9", 
      "https://app.dimensions.ai/details/publication/pub.1014186133"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_317.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/3-540-45468-3_9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-540-45468-3_9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-540-45468-3_9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-540-45468-3_9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-540-45468-3_9'


 

This table displays all metadata directly associated to this object as RDF triples.

148 TRIPLES      23 PREDICATES      91 URIs      84 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/3-540-45468-3_9 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N441b7114217345b4b7f25a07d34a28dd
4 schema:datePublished 2001-10-05
5 schema:datePublishedReg 2001-10-05
6 schema:description We introduce a new paradigm for automatic medical image analysis that adopts concepts from the field of Artificial Life. Our approach prescribes deformable organisms, autonomous agents whose objective is the segmentation and analysis of anatomical structures in medical images. A deformable organism is structured as a ‘muscle’-actuated ‘body’ whose behavior is controlled by a ‘brain’ that is capable of making both reactive and deliberate decisions. This intelligent deformable model possesses an ‘awareness’ of the segmentation process, which emerges from a conflux of perceived sensory data, an internal mental state, memorized knowledge, and a cognitive plan. We develop a class of deformable organisms using a medial representation of body morphology that facilitates a variety of controlled local deformations at multiple spatial scales. Specifically, we demonstrate a deformable ‘worm‘ organism that can overcome noise, incomplete edges, considerable anatomical variation, and occlusion in order to segment and label the corpus callosum in 2D mid-sagittal MR images of the brain.
7 schema:editor Na7af79ff735649678e89246f336f4b35
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree true
11 schema:isPartOf Nfa268f1ed3b74fb882f0e773c2198ca7
12 schema:keywords MR images
13 agents
14 analysis
15 anatomical structures
16 anatomical variations
17 approach
18 artificial life
19 automatic medical image analysis
20 autonomous agents
21 awareness
22 behavior
23 body
24 body morphology
25 brain
26 callosum
27 class
28 cognitive plans
29 concept
30 conflux
31 considerable anatomical variation
32 corpus callosum
33 data
34 decisions
35 deformable model
36 deformable organisms
37 deformation
38 deliberate decision
39 edge
40 field
41 image analysis
42 images
43 incomplete edges
44 intelligent deformable model
45 internal mental states
46 knowledge
47 life
48 local deformation
49 medial representation
50 medical image analysis
51 medical images
52 memorized knowledge
53 mental states
54 mid-sagittal MR images
55 model
56 morphology
57 multiple spatial scales
58 new paradigm
59 noise
60 objective
61 occlusion
62 order
63 organisms
64 paradigm
65 plan
66 process
67 representation
68 scale
69 segmentation
70 segmentation process
71 sensory data
72 spatial scales
73 state
74 structure
75 variation
76 variety
77 worms
78 schema:name Deformable Organisms for Automatic Medical Image Analysis
79 schema:pagination 66-76
80 schema:productId N11f1d758813249e49120763b5f7efecb
81 Nf2a0083424d54729acb4fd1c69f278b2
82 schema:publisher N133de922d3f4474c8082a3740a077878
83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014186133
84 https://doi.org/10.1007/3-540-45468-3_9
85 schema:sdDatePublished 2022-01-01T19:18
86 schema:sdLicense https://scigraph.springernature.com/explorer/license/
87 schema:sdPublisher N71e4a2c450aa408f845a73201c8ae3da
88 schema:url https://doi.org/10.1007/3-540-45468-3_9
89 sgo:license sg:explorer/license/
90 sgo:sdDataset chapters
91 rdf:type schema:Chapter
92 N0516f5a33ee0471287dff5c3a5f6188d schema:familyName Viergever
93 schema:givenName Max A.
94 rdf:type schema:Person
95 N11f1d758813249e49120763b5f7efecb schema:name dimensions_id
96 schema:value pub.1014186133
97 rdf:type schema:PropertyValue
98 N133de922d3f4474c8082a3740a077878 schema:name Springer Nature
99 rdf:type schema:Organisation
100 N431f9b0e5df249f18a3c710ca45e9c38 rdf:first sg:person.016347323445.35
101 rdf:rest rdf:nil
102 N441b7114217345b4b7f25a07d34a28dd rdf:first sg:person.0642774233.16
103 rdf:rest N7d16ebcd82984797bbc1c2da375d472d
104 N71e4a2c450aa408f845a73201c8ae3da schema:name Springer Nature - SN SciGraph project
105 rdf:type schema:Organization
106 N7d16ebcd82984797bbc1c2da375d472d rdf:first sg:person.010127567536.82
107 rdf:rest N431f9b0e5df249f18a3c710ca45e9c38
108 N9cc9367f3ba74ea1bd274c01c9c8a04d rdf:first N0516f5a33ee0471287dff5c3a5f6188d
109 rdf:rest rdf:nil
110 Na7af79ff735649678e89246f336f4b35 rdf:first Nbd08c244d7d74c8ea8947c4824d1d0cb
111 rdf:rest N9cc9367f3ba74ea1bd274c01c9c8a04d
112 Nbd08c244d7d74c8ea8947c4824d1d0cb schema:familyName Niessen
113 schema:givenName Wiro J.
114 rdf:type schema:Person
115 Nf2a0083424d54729acb4fd1c69f278b2 schema:name doi
116 schema:value 10.1007/3-540-45468-3_9
117 rdf:type schema:PropertyValue
118 Nfa268f1ed3b74fb882f0e773c2198ca7 schema:isbn 978-3-540-42697-4
119 978-3-540-45468-7
120 schema:name Medical Image Computing and Computer-Assisted Intervention – MICCAI 2001
121 rdf:type schema:Book
122 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
123 schema:name Information and Computing Sciences
124 rdf:type schema:DefinedTerm
125 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
126 schema:name Artificial Intelligence and Image Processing
127 rdf:type schema:DefinedTerm
128 sg:person.010127567536.82 schema:affiliation grid-institutes:grid.17063.33
129 schema:familyName McInerney
130 schema:givenName Tim
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010127567536.82
132 rdf:type schema:Person
133 sg:person.016347323445.35 schema:affiliation grid-institutes:grid.17063.33
134 schema:familyName Terzopoulos
135 schema:givenName Demetri
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016347323445.35
137 rdf:type schema:Person
138 sg:person.0642774233.16 schema:affiliation grid-institutes:grid.17063.33
139 schema:familyName Hamarneh
140 schema:givenName Ghassan
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642774233.16
142 rdf:type schema:Person
143 grid-institutes:grid.17063.33 schema:alternateName Dept. of Computer Science, University of Toronto, M5S 3H5, Toronto, Canada
144 schema:name Courant Institute, New York University, 10003, New York, NY, USA
145 Dept. of Computer Science, University of Toronto, M5S 3H5, Toronto, Canada
146 Dept. of Signals and Systems, Chalmers University of Technology, 41296, Göteborg, Sweden
147 School of Computer Science, Ryerson University, M5B 2K3, Toronto, Canada
148 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...