An Apriori-Based Algorithm for Mining Frequent Substructures from Graph Data View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2002-07-18

AUTHORS

Akihiro Inokuchi , Takashi Washio , Hiroshi Motoda

ABSTRACT

This paper proposes a novel approach named AGM to efficiently mine the association rules among the frequently appearing sub-structures in a given graph data set. A graph transaction is represented by an adjacency matrix, and the frequent patterns appearing in the matrices are mined through the extended algorithm of the basket analysis. Its performance has been evaluated for the artificial simulation data and the carcinogenesis data of Oxford University and NTP. Its high efficiency has been confirmed for the size of a real-world problem.... More... »

PAGES

13-23

References to SciGraph publications

  • 1997-09. Levelwise Search and Borders of Theories in Knowledge Discovery in DATA MINING AND KNOWLEDGE DISCOVERY
  • 2000. Extension of Graph-Based Induction for General Graph Structured Data in KNOWLEDGE DISCOVERY AND DATA MINING. CURRENT ISSUES AND NEW APPLICATIONS
  • 1999-10-22. Derivation of the Topology Structure from Massive Graph Data in DISCOVERY SCIENCE
  • Book

    TITLE

    Principles of Data Mining and Knowledge Discovery

    ISBN

    978-3-540-41066-9
    978-3-540-45372-7

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/3-540-45372-5_2

    DOI

    http://dx.doi.org/10.1007/3-540-45372-5_2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1026984655


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Osaka University", 
              "id": "https://www.grid.ac/institutes/grid.136593.b", 
              "name": [
                "I.S.I.R., Osaka University, 8-1, Mihogaoka, 567-0047, Osaka, Ibarakishi, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Inokuchi", 
            "givenName": "Akihiro", 
            "id": "sg:person.011426107721.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011426107721.30"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Osaka University", 
              "id": "https://www.grid.ac/institutes/grid.136593.b", 
              "name": [
                "I.S.I.R., Osaka University, 8-1, Mihogaoka, 567-0047, Osaka, Ibarakishi, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Washio", 
            "givenName": "Takashi", 
            "id": "sg:person.013400233105.62", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013400233105.62"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Osaka University", 
              "id": "https://www.grid.ac/institutes/grid.136593.b", 
              "name": [
                "I.S.I.R., Osaka University, 8-1, Mihogaoka, 567-0047, Osaka, Ibarakishi, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Motoda", 
            "givenName": "Hiroshi", 
            "id": "sg:person.016251026775.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016251026775.26"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/3-540-45571-x_49", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003898399", 
              "https://doi.org/10.1007/3-540-45571-x_49"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.93.1.438", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005032985"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/qsar.19920110208", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006316981"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1009796218281", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011497512", 
              "https://doi.org/10.1023/a:1009796218281"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-46846-3_35", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043174227", 
              "https://doi.org/10.1007/3-540-46846-3_35"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-46846-3_35", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043174227", 
              "https://doi.org/10.1007/3-540-46846-3_35"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja00336a004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055724429"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2002-07-18", 
        "datePublishedReg": "2002-07-18", 
        "description": "This paper proposes a novel approach named AGM to efficiently mine the association rules among the frequently appearing sub-structures in a given graph data set. A graph transaction is represented by an adjacency matrix, and the frequent patterns appearing in the matrices are mined through the extended algorithm of the basket analysis. Its performance has been evaluated for the artificial simulation data and the carcinogenesis data of Oxford University and NTP. Its high efficiency has been confirmed for the size of a real-world problem....", 
        "editor": [
          {
            "familyName": "Zighed", 
            "givenName": "Djamel A.", 
            "type": "Person"
          }, 
          {
            "familyName": "Komorowski", 
            "givenName": "Jan", 
            "type": "Person"
          }, 
          {
            "familyName": "\u017bytkow", 
            "givenName": "Jan", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/3-540-45372-5_2", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": {
          "isbn": [
            "978-3-540-41066-9", 
            "978-3-540-45372-7"
          ], 
          "name": "Principles of Data Mining and Knowledge Discovery", 
          "type": "Book"
        }, 
        "name": "An Apriori-Based Algorithm for Mining Frequent Substructures from Graph Data", 
        "pagination": "13-23", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/3-540-45372-5_2"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "808c8da5eabeb777a78fcbbbdbe6032e912fbc28d610c045761e1a0016671455"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1026984655"
            ]
          }
        ], 
        "publisher": {
          "location": "Berlin, Heidelberg", 
          "name": "Springer Berlin Heidelberg", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/3-540-45372-5_2", 
          "https://app.dimensions.ai/details/publication/pub.1026984655"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-16T05:23", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000345_0000000345/records_64081_00000001.jsonl", 
        "type": "Chapter", 
        "url": "https://link.springer.com/10.1007%2F3-540-45372-5_2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-540-45372-5_2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-540-45372-5_2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-540-45372-5_2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-540-45372-5_2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    110 TRIPLES      23 PREDICATES      32 URIs      19 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/3-540-45372-5_2 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N2827d1f43d3d43cdbea8d8a1fcd74824
    4 schema:citation sg:pub.10.1007/3-540-45571-x_49
    5 sg:pub.10.1007/3-540-46846-3_35
    6 sg:pub.10.1023/a:1009796218281
    7 https://doi.org/10.1002/qsar.19920110208
    8 https://doi.org/10.1021/ja00336a004
    9 https://doi.org/10.1073/pnas.93.1.438
    10 schema:datePublished 2002-07-18
    11 schema:datePublishedReg 2002-07-18
    12 schema:description This paper proposes a novel approach named AGM to efficiently mine the association rules among the frequently appearing sub-structures in a given graph data set. A graph transaction is represented by an adjacency matrix, and the frequent patterns appearing in the matrices are mined through the extended algorithm of the basket analysis. Its performance has been evaluated for the artificial simulation data and the carcinogenesis data of Oxford University and NTP. Its high efficiency has been confirmed for the size of a real-world problem....
    13 schema:editor N3295746eac6e4c748a20ccd7dc48a9ee
    14 schema:genre chapter
    15 schema:inLanguage en
    16 schema:isAccessibleForFree true
    17 schema:isPartOf N74c628d874cf486584b0dc4ccccb7644
    18 schema:name An Apriori-Based Algorithm for Mining Frequent Substructures from Graph Data
    19 schema:pagination 13-23
    20 schema:productId N6730291feb7d467581d441f3577e4b71
    21 Nb0bda4659aa941499e15fe8fb5d8adbb
    22 Nb1cf9b17ff48454b848768d19beeb061
    23 schema:publisher N7e3f76dca2f34e5ab1a22288d0d92943
    24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026984655
    25 https://doi.org/10.1007/3-540-45372-5_2
    26 schema:sdDatePublished 2019-04-16T05:23
    27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    28 schema:sdPublisher Nc3bb9c541c744193a12ba8736220b64d
    29 schema:url https://link.springer.com/10.1007%2F3-540-45372-5_2
    30 sgo:license sg:explorer/license/
    31 sgo:sdDataset chapters
    32 rdf:type schema:Chapter
    33 N2827d1f43d3d43cdbea8d8a1fcd74824 rdf:first sg:person.011426107721.30
    34 rdf:rest N91a0a82e0b1543a4a6b1fd0bfac2275c
    35 N2b3af3d14fe545cea463b14ad92e1e92 schema:familyName Zighed
    36 schema:givenName Djamel A.
    37 rdf:type schema:Person
    38 N2e8838bd5962439caa828a0da6d83bd3 rdf:first N854ab301ecee4db888e95d47358d7ba2
    39 rdf:rest rdf:nil
    40 N3295746eac6e4c748a20ccd7dc48a9ee rdf:first N2b3af3d14fe545cea463b14ad92e1e92
    41 rdf:rest N5a4615486b394a4fa20596509a5f7fb8
    42 N5a4615486b394a4fa20596509a5f7fb8 rdf:first N795eb26f1c694075b300fca24ef7db34
    43 rdf:rest N2e8838bd5962439caa828a0da6d83bd3
    44 N6730291feb7d467581d441f3577e4b71 schema:name doi
    45 schema:value 10.1007/3-540-45372-5_2
    46 rdf:type schema:PropertyValue
    47 N741d174333f7416e819b397bdb06faa2 rdf:first sg:person.016251026775.26
    48 rdf:rest rdf:nil
    49 N74c628d874cf486584b0dc4ccccb7644 schema:isbn 978-3-540-41066-9
    50 978-3-540-45372-7
    51 schema:name Principles of Data Mining and Knowledge Discovery
    52 rdf:type schema:Book
    53 N795eb26f1c694075b300fca24ef7db34 schema:familyName Komorowski
    54 schema:givenName Jan
    55 rdf:type schema:Person
    56 N7e3f76dca2f34e5ab1a22288d0d92943 schema:location Berlin, Heidelberg
    57 schema:name Springer Berlin Heidelberg
    58 rdf:type schema:Organisation
    59 N854ab301ecee4db888e95d47358d7ba2 schema:familyName Żytkow
    60 schema:givenName Jan
    61 rdf:type schema:Person
    62 N91a0a82e0b1543a4a6b1fd0bfac2275c rdf:first sg:person.013400233105.62
    63 rdf:rest N741d174333f7416e819b397bdb06faa2
    64 Nb0bda4659aa941499e15fe8fb5d8adbb schema:name readcube_id
    65 schema:value 808c8da5eabeb777a78fcbbbdbe6032e912fbc28d610c045761e1a0016671455
    66 rdf:type schema:PropertyValue
    67 Nb1cf9b17ff48454b848768d19beeb061 schema:name dimensions_id
    68 schema:value pub.1026984655
    69 rdf:type schema:PropertyValue
    70 Nc3bb9c541c744193a12ba8736220b64d schema:name Springer Nature - SN SciGraph project
    71 rdf:type schema:Organization
    72 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    73 schema:name Information and Computing Sciences
    74 rdf:type schema:DefinedTerm
    75 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    76 schema:name Artificial Intelligence and Image Processing
    77 rdf:type schema:DefinedTerm
    78 sg:person.011426107721.30 schema:affiliation https://www.grid.ac/institutes/grid.136593.b
    79 schema:familyName Inokuchi
    80 schema:givenName Akihiro
    81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011426107721.30
    82 rdf:type schema:Person
    83 sg:person.013400233105.62 schema:affiliation https://www.grid.ac/institutes/grid.136593.b
    84 schema:familyName Washio
    85 schema:givenName Takashi
    86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013400233105.62
    87 rdf:type schema:Person
    88 sg:person.016251026775.26 schema:affiliation https://www.grid.ac/institutes/grid.136593.b
    89 schema:familyName Motoda
    90 schema:givenName Hiroshi
    91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016251026775.26
    92 rdf:type schema:Person
    93 sg:pub.10.1007/3-540-45571-x_49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003898399
    94 https://doi.org/10.1007/3-540-45571-x_49
    95 rdf:type schema:CreativeWork
    96 sg:pub.10.1007/3-540-46846-3_35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043174227
    97 https://doi.org/10.1007/3-540-46846-3_35
    98 rdf:type schema:CreativeWork
    99 sg:pub.10.1023/a:1009796218281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011497512
    100 https://doi.org/10.1023/a:1009796218281
    101 rdf:type schema:CreativeWork
    102 https://doi.org/10.1002/qsar.19920110208 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006316981
    103 rdf:type schema:CreativeWork
    104 https://doi.org/10.1021/ja00336a004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055724429
    105 rdf:type schema:CreativeWork
    106 https://doi.org/10.1073/pnas.93.1.438 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005032985
    107 rdf:type schema:CreativeWork
    108 https://www.grid.ac/institutes/grid.136593.b schema:alternateName Osaka University
    109 schema:name I.S.I.R., Osaka University, 8-1, Mihogaoka, 567-0047, Osaka, Ibarakishi, Japan
    110 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...