Generating Frequent Patterns with the Frequent Pattern List View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2001

AUTHORS

Fan-Chen Tseng , Ching-Chi Hsu

ABSTRACT

The generation of frequent patterns (or frequent itemsets) has been studied in various areas of data mining. Most of the studies take the Aprioribased generation-and-test approach, which is computationally costly in the generation of candidate frequent patterns. Methods like frequent pattern trees has been utilized to avoid candidate set generation, but they work with more complicated data structures. In this paper, we propose another approach to mining frequent patterns without candidate generation. Our approach uses a simple linear list called Frequent Pattern List (FPL). By performing simple operations on FPLs, we can discover frequent patterns easily. Two algorithms, FPL-Construction and FPL-Mining, are proposed to construct the FPL and generate frequent patterns from the FPL, respectively. More... »

PAGES

376-386

Book

TITLE

Advances in Knowledge Discovery and Data Mining

ISBN

978-3-540-41910-5
978-3-540-45357-4

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/3-540-45357-1_40

DOI

http://dx.doi.org/10.1007/3-540-45357-1_40

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1022178469


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Taiwan University", 
          "id": "https://www.grid.ac/institutes/grid.19188.39", 
          "name": [
            "Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan, 106"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tseng", 
        "givenName": "Fan-Chen", 
        "id": "sg:person.0736546234.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736546234.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Taiwan University", 
          "id": "https://www.grid.ac/institutes/grid.19188.39", 
          "name": [
            "Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan, 106"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hsu", 
        "givenName": "Ching-Chi", 
        "id": "sg:person.01070060711.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070060711.56"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1109/69.634757", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061213641"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2001", 
    "datePublishedReg": "2001-01-01", 
    "description": "The generation of frequent patterns (or frequent itemsets) has been studied in various areas of data mining. Most of the studies take the Aprioribased generation-and-test approach, which is computationally costly in the generation of candidate frequent patterns. Methods like frequent pattern trees has been utilized to avoid candidate set generation, but they work with more complicated data structures. In this paper, we propose another approach to mining frequent patterns without candidate generation. Our approach uses a simple linear list called Frequent Pattern List (FPL). By performing simple operations on FPLs, we can discover frequent patterns easily. Two algorithms, FPL-Construction and FPL-Mining, are proposed to construct the FPL and generate frequent patterns from the FPL, respectively.", 
    "editor": [
      {
        "familyName": "Cheung", 
        "givenName": "David", 
        "type": "Person"
      }, 
      {
        "familyName": "Williams", 
        "givenName": "Graham J.", 
        "type": "Person"
      }, 
      {
        "familyName": "Li", 
        "givenName": "Qing", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/3-540-45357-1_40", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-41910-5", 
        "978-3-540-45357-4"
      ], 
      "name": "Advances in Knowledge Discovery and Data Mining", 
      "type": "Book"
    }, 
    "name": "Generating Frequent Patterns with the Frequent Pattern List", 
    "pagination": "376-386", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/3-540-45357-1_40"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "69aa09767ed1d8477a220521f1a822ebc7ed2c3f145b9c53741fdcc1cca7a329"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1022178469"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/3-540-45357-1_40", 
      "https://app.dimensions.ai/details/publication/pub.1022178469"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T16:16", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000256.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/3-540-45357-1_40"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-540-45357-1_40'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-540-45357-1_40'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-540-45357-1_40'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-540-45357-1_40'


 

This table displays all metadata directly associated to this object as RDF triples.

85 TRIPLES      23 PREDICATES      28 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/3-540-45357-1_40 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N77dc8d03d5f446daa5198de24a33bed7
4 schema:citation https://doi.org/10.1109/69.634757
5 schema:datePublished 2001
6 schema:datePublishedReg 2001-01-01
7 schema:description The generation of frequent patterns (or frequent itemsets) has been studied in various areas of data mining. Most of the studies take the Aprioribased generation-and-test approach, which is computationally costly in the generation of candidate frequent patterns. Methods like frequent pattern trees has been utilized to avoid candidate set generation, but they work with more complicated data structures. In this paper, we propose another approach to mining frequent patterns without candidate generation. Our approach uses a simple linear list called Frequent Pattern List (FPL). By performing simple operations on FPLs, we can discover frequent patterns easily. Two algorithms, FPL-Construction and FPL-Mining, are proposed to construct the FPL and generate frequent patterns from the FPL, respectively.
8 schema:editor Nbfc2a55ef69b4555ad396c13fecbab10
9 schema:genre chapter
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N3369e0f247994e5091535deda8f4c981
13 schema:name Generating Frequent Patterns with the Frequent Pattern List
14 schema:pagination 376-386
15 schema:productId Na783de5de1744531a3dfb1ba454484cc
16 Nae99f19e20fa4228add95b1c9befa8af
17 Nd0d4985855094c3ca362f8a1ab9c8193
18 schema:publisher N50986a30a7a442c283220c3d62fda4b3
19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022178469
20 https://doi.org/10.1007/3-540-45357-1_40
21 schema:sdDatePublished 2019-04-15T16:16
22 schema:sdLicense https://scigraph.springernature.com/explorer/license/
23 schema:sdPublisher N569ebbb613a84b5e95d2c7577f6f54e0
24 schema:url http://link.springer.com/10.1007/3-540-45357-1_40
25 sgo:license sg:explorer/license/
26 sgo:sdDataset chapters
27 rdf:type schema:Chapter
28 N1de17345957142a08d08cbb60225ec2c schema:familyName Cheung
29 schema:givenName David
30 rdf:type schema:Person
31 N3369e0f247994e5091535deda8f4c981 schema:isbn 978-3-540-41910-5
32 978-3-540-45357-4
33 schema:name Advances in Knowledge Discovery and Data Mining
34 rdf:type schema:Book
35 N4e31d9fdaecb4ef5904eb69089ea9979 rdf:first sg:person.01070060711.56
36 rdf:rest rdf:nil
37 N50986a30a7a442c283220c3d62fda4b3 schema:location Berlin, Heidelberg
38 schema:name Springer Berlin Heidelberg
39 rdf:type schema:Organisation
40 N569ebbb613a84b5e95d2c7577f6f54e0 schema:name Springer Nature - SN SciGraph project
41 rdf:type schema:Organization
42 N67976d625bf74560b7a68bd912ee3cb1 rdf:first Nd5c448d0dcf14fcc9b470995a0194718
43 rdf:rest Nc00ec08147f145ec8558ec6b1226e7f7
44 N77dc8d03d5f446daa5198de24a33bed7 rdf:first sg:person.0736546234.56
45 rdf:rest N4e31d9fdaecb4ef5904eb69089ea9979
46 Na783de5de1744531a3dfb1ba454484cc schema:name dimensions_id
47 schema:value pub.1022178469
48 rdf:type schema:PropertyValue
49 Nae99f19e20fa4228add95b1c9befa8af schema:name readcube_id
50 schema:value 69aa09767ed1d8477a220521f1a822ebc7ed2c3f145b9c53741fdcc1cca7a329
51 rdf:type schema:PropertyValue
52 Nbfc2a55ef69b4555ad396c13fecbab10 rdf:first N1de17345957142a08d08cbb60225ec2c
53 rdf:rest N67976d625bf74560b7a68bd912ee3cb1
54 Nc00ec08147f145ec8558ec6b1226e7f7 rdf:first Nd201ab907fbd4cedb4847847187f5e93
55 rdf:rest rdf:nil
56 Nd0d4985855094c3ca362f8a1ab9c8193 schema:name doi
57 schema:value 10.1007/3-540-45357-1_40
58 rdf:type schema:PropertyValue
59 Nd201ab907fbd4cedb4847847187f5e93 schema:familyName Li
60 schema:givenName Qing
61 rdf:type schema:Person
62 Nd5c448d0dcf14fcc9b470995a0194718 schema:familyName Williams
63 schema:givenName Graham J.
64 rdf:type schema:Person
65 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
66 schema:name Information and Computing Sciences
67 rdf:type schema:DefinedTerm
68 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
69 schema:name Artificial Intelligence and Image Processing
70 rdf:type schema:DefinedTerm
71 sg:person.01070060711.56 schema:affiliation https://www.grid.ac/institutes/grid.19188.39
72 schema:familyName Hsu
73 schema:givenName Ching-Chi
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070060711.56
75 rdf:type schema:Person
76 sg:person.0736546234.56 schema:affiliation https://www.grid.ac/institutes/grid.19188.39
77 schema:familyName Tseng
78 schema:givenName Fan-Chen
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736546234.56
80 rdf:type schema:Person
81 https://doi.org/10.1109/69.634757 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061213641
82 rdf:type schema:CreativeWork
83 https://www.grid.ac/institutes/grid.19188.39 schema:alternateName National Taiwan University
84 schema:name Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan, 106
85 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...