Monte Carlo Analysis of the Small-Signal Response of Charge Carriers View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2001-12-20

AUTHORS

H. Kosina , M. Nedjalkov , S. Selberherr

ABSTRACT

A Monte Carlo method for calculation of the small signal response of charge carriers in semiconductors is presented. The transient Boltzmann equation is linearized with respect to the electric field and an impulse-like perturbation in the field is assumed. The presented formalism allows the impulse response to be explained as a relaxation process, where two carrier ensembles evolve from different inditial distributions to one and the same steady state. Using different methods to generate the initial distributions gives rise to a variety of Monte Carlo algorithms. Both existing and new algorithms for direct simulation of the impulse response are obtained in a unified way. Additionally, the special case of vanishing electric field is considered. Applications to technologically significant semiconductors are shown. For Gallium Arsenide a resonance effect occurring at low temperatures is discussed. More... »

PAGES

175-182

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/3-540-45346-6_17

DOI

http://dx.doi.org/10.1007/3-540-45346-6_17

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1020923297


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute for Microelectronics, TU-Vienna, Gusshausstrasse 27-29/E360, A-1040, Wien, Austria", 
          "id": "http://www.grid.ac/institutes/grid.5329.d", 
          "name": [
            "Institute for Microelectronics, TU-Vienna, Gusshausstrasse 27-29/E360, A-1040, Wien, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kosina", 
        "givenName": "H.", 
        "id": "sg:person.016550513317.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016550513317.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Microelectronics, TU-Vienna, Gusshausstrasse 27-29/E360, A-1040, Wien, Austria", 
          "id": "http://www.grid.ac/institutes/grid.5329.d", 
          "name": [
            "Institute for Microelectronics, TU-Vienna, Gusshausstrasse 27-29/E360, A-1040, Wien, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nedjalkov", 
        "givenName": "M.", 
        "id": "sg:person.011142023427.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011142023427.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Microelectronics, TU-Vienna, Gusshausstrasse 27-29/E360, A-1040, Wien, Austria", 
          "id": "http://www.grid.ac/institutes/grid.5329.d", 
          "name": [
            "Institute for Microelectronics, TU-Vienna, Gusshausstrasse 27-29/E360, A-1040, Wien, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Selberherr", 
        "givenName": "S.", 
        "id": "sg:person.013033344117.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013033344117.92"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2001-12-20", 
    "datePublishedReg": "2001-12-20", 
    "description": "A Monte Carlo method for calculation of the small signal response of charge carriers in semiconductors is presented. The transient Boltzmann equation is linearized with respect to the electric field and an impulse-like perturbation in the field is assumed. The presented formalism allows the impulse response to be explained as a relaxation process, where two carrier ensembles evolve from different inditial distributions to one and the same steady state. Using different methods to generate the initial distributions gives rise to a variety of Monte Carlo algorithms. Both existing and new algorithms for direct simulation of the impulse response are obtained in a unified way. Additionally, the special case of vanishing electric field is considered. Applications to technologically significant semiconductors are shown. For Gallium Arsenide a resonance effect occurring at low temperatures is discussed.", 
    "editor": [
      {
        "familyName": "Margenov", 
        "givenName": "Svetozar", 
        "type": "Person"
      }, 
      {
        "familyName": "Wa\u015bniewski", 
        "givenName": "Jerzy", 
        "type": "Person"
      }, 
      {
        "familyName": "Yalamov", 
        "givenName": "Plamen", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/3-540-45346-6_17", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-43043-8", 
        "978-3-540-45346-8"
      ], 
      "name": "Large-Scale Scientific Computing", 
      "type": "Book"
    }, 
    "keywords": [
      "small-signal response", 
      "Monte Carlo algorithm", 
      "Monte Carlo method", 
      "impulse response", 
      "Monte Carlo analysis", 
      "Boltzmann equation", 
      "Carlo algorithm", 
      "presented formalism", 
      "Carlo method", 
      "carrier ensemble", 
      "significant semiconductors", 
      "same steady state", 
      "direct simulation", 
      "electric field", 
      "unified way", 
      "special case", 
      "initial distribution", 
      "charge carriers", 
      "Carlo analysis", 
      "new algorithm", 
      "steady state", 
      "semiconductors", 
      "gallium arsenide", 
      "relaxation processes", 
      "algorithm", 
      "field", 
      "equations", 
      "resonance effect", 
      "formalism", 
      "signal response", 
      "low temperature", 
      "different methods", 
      "perturbations", 
      "ensemble", 
      "distribution", 
      "simulations", 
      "calculations", 
      "arsenide", 
      "temperature", 
      "carriers", 
      "method", 
      "applications", 
      "respect", 
      "state", 
      "process", 
      "cases", 
      "way", 
      "analysis", 
      "variety", 
      "effect", 
      "response"
    ], 
    "name": "Monte Carlo Analysis of the Small-Signal Response of Charge Carriers", 
    "pagination": "175-182", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1020923297"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/3-540-45346-6_17"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/3-540-45346-6_17", 
      "https://app.dimensions.ai/details/publication/pub.1020923297"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-10T10:42", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/chapter/chapter_216.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/3-540-45346-6_17"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-540-45346-6_17'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-540-45346-6_17'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-540-45346-6_17'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-540-45346-6_17'


 

This table displays all metadata directly associated to this object as RDF triples.

135 TRIPLES      23 PREDICATES      76 URIs      69 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/3-540-45346-6_17 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nedd3ecb54f614c749e2e08e13114320c
4 schema:datePublished 2001-12-20
5 schema:datePublishedReg 2001-12-20
6 schema:description A Monte Carlo method for calculation of the small signal response of charge carriers in semiconductors is presented. The transient Boltzmann equation is linearized with respect to the electric field and an impulse-like perturbation in the field is assumed. The presented formalism allows the impulse response to be explained as a relaxation process, where two carrier ensembles evolve from different inditial distributions to one and the same steady state. Using different methods to generate the initial distributions gives rise to a variety of Monte Carlo algorithms. Both existing and new algorithms for direct simulation of the impulse response are obtained in a unified way. Additionally, the special case of vanishing electric field is considered. Applications to technologically significant semiconductors are shown. For Gallium Arsenide a resonance effect occurring at low temperatures is discussed.
7 schema:editor N6465c2e3795f4205ae48b52481b4c723
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N8c8cbb1ea43a473e8aed82a63badaed3
12 schema:keywords Boltzmann equation
13 Carlo algorithm
14 Carlo analysis
15 Carlo method
16 Monte Carlo algorithm
17 Monte Carlo analysis
18 Monte Carlo method
19 algorithm
20 analysis
21 applications
22 arsenide
23 calculations
24 carrier ensemble
25 carriers
26 cases
27 charge carriers
28 different methods
29 direct simulation
30 distribution
31 effect
32 electric field
33 ensemble
34 equations
35 field
36 formalism
37 gallium arsenide
38 impulse response
39 initial distribution
40 low temperature
41 method
42 new algorithm
43 perturbations
44 presented formalism
45 process
46 relaxation processes
47 resonance effect
48 respect
49 response
50 same steady state
51 semiconductors
52 signal response
53 significant semiconductors
54 simulations
55 small-signal response
56 special case
57 state
58 steady state
59 temperature
60 unified way
61 variety
62 way
63 schema:name Monte Carlo Analysis of the Small-Signal Response of Charge Carriers
64 schema:pagination 175-182
65 schema:productId N83f1d2c8a8044eb89eef4874a9573609
66 Nb08580cac53d4cb7abc6f6eea02f51ae
67 schema:publisher N436f6423417f41589c24e3404067cb18
68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020923297
69 https://doi.org/10.1007/3-540-45346-6_17
70 schema:sdDatePublished 2022-05-10T10:42
71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
72 schema:sdPublisher Ndc28ee2f4894498fbb8fcb595fda9e6d
73 schema:url https://doi.org/10.1007/3-540-45346-6_17
74 sgo:license sg:explorer/license/
75 sgo:sdDataset chapters
76 rdf:type schema:Chapter
77 N1b623fefced540438c5121378f6ec9d9 rdf:first sg:person.013033344117.92
78 rdf:rest rdf:nil
79 N1f0d9c4288e54259bd383c51abdb0823 rdf:first sg:person.011142023427.48
80 rdf:rest N1b623fefced540438c5121378f6ec9d9
81 N368d188b070e4f28b034947963c197f1 rdf:first N8781d49cef1b451ea203b825de2986c2
82 rdf:rest N9411c45336c54ecf893d664b1af55f5a
83 N436f6423417f41589c24e3404067cb18 schema:name Springer Nature
84 rdf:type schema:Organisation
85 N6465c2e3795f4205ae48b52481b4c723 rdf:first Nbf8ea8de9d924bbd91396e86afeb40f0
86 rdf:rest N368d188b070e4f28b034947963c197f1
87 N7cc4782be4cc4ca7b5640c97ff9ee1d6 schema:familyName Yalamov
88 schema:givenName Plamen
89 rdf:type schema:Person
90 N83f1d2c8a8044eb89eef4874a9573609 schema:name dimensions_id
91 schema:value pub.1020923297
92 rdf:type schema:PropertyValue
93 N8781d49cef1b451ea203b825de2986c2 schema:familyName Waśniewski
94 schema:givenName Jerzy
95 rdf:type schema:Person
96 N8c8cbb1ea43a473e8aed82a63badaed3 schema:isbn 978-3-540-43043-8
97 978-3-540-45346-8
98 schema:name Large-Scale Scientific Computing
99 rdf:type schema:Book
100 N9411c45336c54ecf893d664b1af55f5a rdf:first N7cc4782be4cc4ca7b5640c97ff9ee1d6
101 rdf:rest rdf:nil
102 Nb08580cac53d4cb7abc6f6eea02f51ae schema:name doi
103 schema:value 10.1007/3-540-45346-6_17
104 rdf:type schema:PropertyValue
105 Nbf8ea8de9d924bbd91396e86afeb40f0 schema:familyName Margenov
106 schema:givenName Svetozar
107 rdf:type schema:Person
108 Ndc28ee2f4894498fbb8fcb595fda9e6d schema:name Springer Nature - SN SciGraph project
109 rdf:type schema:Organization
110 Nedd3ecb54f614c749e2e08e13114320c rdf:first sg:person.016550513317.72
111 rdf:rest N1f0d9c4288e54259bd383c51abdb0823
112 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
113 schema:name Information and Computing Sciences
114 rdf:type schema:DefinedTerm
115 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
116 schema:name Artificial Intelligence and Image Processing
117 rdf:type schema:DefinedTerm
118 sg:person.011142023427.48 schema:affiliation grid-institutes:grid.5329.d
119 schema:familyName Nedjalkov
120 schema:givenName M.
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011142023427.48
122 rdf:type schema:Person
123 sg:person.013033344117.92 schema:affiliation grid-institutes:grid.5329.d
124 schema:familyName Selberherr
125 schema:givenName S.
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013033344117.92
127 rdf:type schema:Person
128 sg:person.016550513317.72 schema:affiliation grid-institutes:grid.5329.d
129 schema:familyName Kosina
130 schema:givenName H.
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016550513317.72
132 rdf:type schema:Person
133 grid-institutes:grid.5329.d schema:alternateName Institute for Microelectronics, TU-Vienna, Gusshausstrasse 27-29/E360, A-1040, Wien, Austria
134 schema:name Institute for Microelectronics, TU-Vienna, Gusshausstrasse 27-29/E360, A-1040, Wien, Austria
135 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...