Ontology type: schema:Chapter
2001-12-20
AUTHORSH. Kosina , M. Nedjalkov , S. Selberherr
ABSTRACTA Monte Carlo method for calculation of the small signal response of charge carriers in semiconductors is presented. The transient Boltzmann equation is linearized with respect to the electric field and an impulse-like perturbation in the field is assumed. The presented formalism allows the impulse response to be explained as a relaxation process, where two carrier ensembles evolve from different inditial distributions to one and the same steady state. Using different methods to generate the initial distributions gives rise to a variety of Monte Carlo algorithms. Both existing and new algorithms for direct simulation of the impulse response are obtained in a unified way. Additionally, the special case of vanishing electric field is considered. Applications to technologically significant semiconductors are shown. For Gallium Arsenide a resonance effect occurring at low temperatures is discussed. More... »
PAGES175-182
Large-Scale Scientific Computing
ISBN
978-3-540-43043-8
978-3-540-45346-8
http://scigraph.springernature.com/pub.10.1007/3-540-45346-6_17
DOIhttp://dx.doi.org/10.1007/3-540-45346-6_17
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1020923297
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Artificial Intelligence and Image Processing",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Institute for Microelectronics, TU-Vienna, Gusshausstrasse 27-29/E360, A-1040, Wien, Austria",
"id": "http://www.grid.ac/institutes/grid.5329.d",
"name": [
"Institute for Microelectronics, TU-Vienna, Gusshausstrasse 27-29/E360, A-1040, Wien, Austria"
],
"type": "Organization"
},
"familyName": "Kosina",
"givenName": "H.",
"id": "sg:person.016550513317.72",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016550513317.72"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute for Microelectronics, TU-Vienna, Gusshausstrasse 27-29/E360, A-1040, Wien, Austria",
"id": "http://www.grid.ac/institutes/grid.5329.d",
"name": [
"Institute for Microelectronics, TU-Vienna, Gusshausstrasse 27-29/E360, A-1040, Wien, Austria"
],
"type": "Organization"
},
"familyName": "Nedjalkov",
"givenName": "M.",
"id": "sg:person.011142023427.48",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011142023427.48"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute for Microelectronics, TU-Vienna, Gusshausstrasse 27-29/E360, A-1040, Wien, Austria",
"id": "http://www.grid.ac/institutes/grid.5329.d",
"name": [
"Institute for Microelectronics, TU-Vienna, Gusshausstrasse 27-29/E360, A-1040, Wien, Austria"
],
"type": "Organization"
},
"familyName": "Selberherr",
"givenName": "S.",
"id": "sg:person.013033344117.92",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013033344117.92"
],
"type": "Person"
}
],
"datePublished": "2001-12-20",
"datePublishedReg": "2001-12-20",
"description": "A Monte Carlo method for calculation of the small signal response of charge carriers in semiconductors is presented. The transient Boltzmann equation is linearized with respect to the electric field and an impulse-like perturbation in the field is assumed. The presented formalism allows the impulse response to be explained as a relaxation process, where two carrier ensembles evolve from different inditial distributions to one and the same steady state. Using different methods to generate the initial distributions gives rise to a variety of Monte Carlo algorithms. Both existing and new algorithms for direct simulation of the impulse response are obtained in a unified way. Additionally, the special case of vanishing electric field is considered. Applications to technologically significant semiconductors are shown. For Gallium Arsenide a resonance effect occurring at low temperatures is discussed.",
"editor": [
{
"familyName": "Margenov",
"givenName": "Svetozar",
"type": "Person"
},
{
"familyName": "Wa\u015bniewski",
"givenName": "Jerzy",
"type": "Person"
},
{
"familyName": "Yalamov",
"givenName": "Plamen",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/3-540-45346-6_17",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-540-43043-8",
"978-3-540-45346-8"
],
"name": "Large-Scale Scientific Computing",
"type": "Book"
},
"keywords": [
"small-signal response",
"Monte Carlo algorithm",
"Monte Carlo method",
"impulse response",
"Monte Carlo analysis",
"Boltzmann equation",
"Carlo algorithm",
"presented formalism",
"Carlo method",
"carrier ensemble",
"significant semiconductors",
"same steady state",
"direct simulation",
"electric field",
"unified way",
"special case",
"initial distribution",
"charge carriers",
"Carlo analysis",
"new algorithm",
"steady state",
"semiconductors",
"gallium arsenide",
"relaxation processes",
"algorithm",
"field",
"equations",
"resonance effect",
"formalism",
"signal response",
"low temperature",
"different methods",
"perturbations",
"ensemble",
"distribution",
"simulations",
"calculations",
"arsenide",
"temperature",
"carriers",
"method",
"applications",
"respect",
"state",
"process",
"cases",
"way",
"analysis",
"variety",
"effect",
"response"
],
"name": "Monte Carlo Analysis of the Small-Signal Response of Charge Carriers",
"pagination": "175-182",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1020923297"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/3-540-45346-6_17"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/3-540-45346-6_17",
"https://app.dimensions.ai/details/publication/pub.1020923297"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-10T10:42",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/chapter/chapter_216.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/3-540-45346-6_17"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-540-45346-6_17'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-540-45346-6_17'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-540-45346-6_17'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-540-45346-6_17'
This table displays all metadata directly associated to this object as RDF triples.
135 TRIPLES
23 PREDICATES
76 URIs
69 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/3-540-45346-6_17 | schema:about | anzsrc-for:08 |
2 | ″ | ″ | anzsrc-for:0801 |
3 | ″ | schema:author | Nedd3ecb54f614c749e2e08e13114320c |
4 | ″ | schema:datePublished | 2001-12-20 |
5 | ″ | schema:datePublishedReg | 2001-12-20 |
6 | ″ | schema:description | A Monte Carlo method for calculation of the small signal response of charge carriers in semiconductors is presented. The transient Boltzmann equation is linearized with respect to the electric field and an impulse-like perturbation in the field is assumed. The presented formalism allows the impulse response to be explained as a relaxation process, where two carrier ensembles evolve from different inditial distributions to one and the same steady state. Using different methods to generate the initial distributions gives rise to a variety of Monte Carlo algorithms. Both existing and new algorithms for direct simulation of the impulse response are obtained in a unified way. Additionally, the special case of vanishing electric field is considered. Applications to technologically significant semiconductors are shown. For Gallium Arsenide a resonance effect occurring at low temperatures is discussed. |
7 | ″ | schema:editor | N6465c2e3795f4205ae48b52481b4c723 |
8 | ″ | schema:genre | chapter |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | false |
11 | ″ | schema:isPartOf | N8c8cbb1ea43a473e8aed82a63badaed3 |
12 | ″ | schema:keywords | Boltzmann equation |
13 | ″ | ″ | Carlo algorithm |
14 | ″ | ″ | Carlo analysis |
15 | ″ | ″ | Carlo method |
16 | ″ | ″ | Monte Carlo algorithm |
17 | ″ | ″ | Monte Carlo analysis |
18 | ″ | ″ | Monte Carlo method |
19 | ″ | ″ | algorithm |
20 | ″ | ″ | analysis |
21 | ″ | ″ | applications |
22 | ″ | ″ | arsenide |
23 | ″ | ″ | calculations |
24 | ″ | ″ | carrier ensemble |
25 | ″ | ″ | carriers |
26 | ″ | ″ | cases |
27 | ″ | ″ | charge carriers |
28 | ″ | ″ | different methods |
29 | ″ | ″ | direct simulation |
30 | ″ | ″ | distribution |
31 | ″ | ″ | effect |
32 | ″ | ″ | electric field |
33 | ″ | ″ | ensemble |
34 | ″ | ″ | equations |
35 | ″ | ″ | field |
36 | ″ | ″ | formalism |
37 | ″ | ″ | gallium arsenide |
38 | ″ | ″ | impulse response |
39 | ″ | ″ | initial distribution |
40 | ″ | ″ | low temperature |
41 | ″ | ″ | method |
42 | ″ | ″ | new algorithm |
43 | ″ | ″ | perturbations |
44 | ″ | ″ | presented formalism |
45 | ″ | ″ | process |
46 | ″ | ″ | relaxation processes |
47 | ″ | ″ | resonance effect |
48 | ″ | ″ | respect |
49 | ″ | ″ | response |
50 | ″ | ″ | same steady state |
51 | ″ | ″ | semiconductors |
52 | ″ | ″ | signal response |
53 | ″ | ″ | significant semiconductors |
54 | ″ | ″ | simulations |
55 | ″ | ″ | small-signal response |
56 | ″ | ″ | special case |
57 | ″ | ″ | state |
58 | ″ | ″ | steady state |
59 | ″ | ″ | temperature |
60 | ″ | ″ | unified way |
61 | ″ | ″ | variety |
62 | ″ | ″ | way |
63 | ″ | schema:name | Monte Carlo Analysis of the Small-Signal Response of Charge Carriers |
64 | ″ | schema:pagination | 175-182 |
65 | ″ | schema:productId | N83f1d2c8a8044eb89eef4874a9573609 |
66 | ″ | ″ | Nb08580cac53d4cb7abc6f6eea02f51ae |
67 | ″ | schema:publisher | N436f6423417f41589c24e3404067cb18 |
68 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1020923297 |
69 | ″ | ″ | https://doi.org/10.1007/3-540-45346-6_17 |
70 | ″ | schema:sdDatePublished | 2022-05-10T10:42 |
71 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
72 | ″ | schema:sdPublisher | Ndc28ee2f4894498fbb8fcb595fda9e6d |
73 | ″ | schema:url | https://doi.org/10.1007/3-540-45346-6_17 |
74 | ″ | sgo:license | sg:explorer/license/ |
75 | ″ | sgo:sdDataset | chapters |
76 | ″ | rdf:type | schema:Chapter |
77 | N1b623fefced540438c5121378f6ec9d9 | rdf:first | sg:person.013033344117.92 |
78 | ″ | rdf:rest | rdf:nil |
79 | N1f0d9c4288e54259bd383c51abdb0823 | rdf:first | sg:person.011142023427.48 |
80 | ″ | rdf:rest | N1b623fefced540438c5121378f6ec9d9 |
81 | N368d188b070e4f28b034947963c197f1 | rdf:first | N8781d49cef1b451ea203b825de2986c2 |
82 | ″ | rdf:rest | N9411c45336c54ecf893d664b1af55f5a |
83 | N436f6423417f41589c24e3404067cb18 | schema:name | Springer Nature |
84 | ″ | rdf:type | schema:Organisation |
85 | N6465c2e3795f4205ae48b52481b4c723 | rdf:first | Nbf8ea8de9d924bbd91396e86afeb40f0 |
86 | ″ | rdf:rest | N368d188b070e4f28b034947963c197f1 |
87 | N7cc4782be4cc4ca7b5640c97ff9ee1d6 | schema:familyName | Yalamov |
88 | ″ | schema:givenName | Plamen |
89 | ″ | rdf:type | schema:Person |
90 | N83f1d2c8a8044eb89eef4874a9573609 | schema:name | dimensions_id |
91 | ″ | schema:value | pub.1020923297 |
92 | ″ | rdf:type | schema:PropertyValue |
93 | N8781d49cef1b451ea203b825de2986c2 | schema:familyName | Waśniewski |
94 | ″ | schema:givenName | Jerzy |
95 | ″ | rdf:type | schema:Person |
96 | N8c8cbb1ea43a473e8aed82a63badaed3 | schema:isbn | 978-3-540-43043-8 |
97 | ″ | ″ | 978-3-540-45346-8 |
98 | ″ | schema:name | Large-Scale Scientific Computing |
99 | ″ | rdf:type | schema:Book |
100 | N9411c45336c54ecf893d664b1af55f5a | rdf:first | N7cc4782be4cc4ca7b5640c97ff9ee1d6 |
101 | ″ | rdf:rest | rdf:nil |
102 | Nb08580cac53d4cb7abc6f6eea02f51ae | schema:name | doi |
103 | ″ | schema:value | 10.1007/3-540-45346-6_17 |
104 | ″ | rdf:type | schema:PropertyValue |
105 | Nbf8ea8de9d924bbd91396e86afeb40f0 | schema:familyName | Margenov |
106 | ″ | schema:givenName | Svetozar |
107 | ″ | rdf:type | schema:Person |
108 | Ndc28ee2f4894498fbb8fcb595fda9e6d | schema:name | Springer Nature - SN SciGraph project |
109 | ″ | rdf:type | schema:Organization |
110 | Nedd3ecb54f614c749e2e08e13114320c | rdf:first | sg:person.016550513317.72 |
111 | ″ | rdf:rest | N1f0d9c4288e54259bd383c51abdb0823 |
112 | anzsrc-for:08 | schema:inDefinedTermSet | anzsrc-for: |
113 | ″ | schema:name | Information and Computing Sciences |
114 | ″ | rdf:type | schema:DefinedTerm |
115 | anzsrc-for:0801 | schema:inDefinedTermSet | anzsrc-for: |
116 | ″ | schema:name | Artificial Intelligence and Image Processing |
117 | ″ | rdf:type | schema:DefinedTerm |
118 | sg:person.011142023427.48 | schema:affiliation | grid-institutes:grid.5329.d |
119 | ″ | schema:familyName | Nedjalkov |
120 | ″ | schema:givenName | M. |
121 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011142023427.48 |
122 | ″ | rdf:type | schema:Person |
123 | sg:person.013033344117.92 | schema:affiliation | grid-institutes:grid.5329.d |
124 | ″ | schema:familyName | Selberherr |
125 | ″ | schema:givenName | S. |
126 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013033344117.92 |
127 | ″ | rdf:type | schema:Person |
128 | sg:person.016550513317.72 | schema:affiliation | grid-institutes:grid.5329.d |
129 | ″ | schema:familyName | Kosina |
130 | ″ | schema:givenName | H. |
131 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016550513317.72 |
132 | ″ | rdf:type | schema:Person |
133 | grid-institutes:grid.5329.d | schema:alternateName | Institute for Microelectronics, TU-Vienna, Gusshausstrasse 27-29/E360, A-1040, Wien, Austria |
134 | ″ | schema:name | Institute for Microelectronics, TU-Vienna, Gusshausstrasse 27-29/E360, A-1040, Wien, Austria |
135 | ″ | rdf:type | schema:Organization |