Twin Test: On Discriminability of Fingerprints View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2001-08-17

AUTHORS

Anil K. Jain , Salil Prabhakar , Sharath Pankanti

ABSTRACT

Automatic identification methods based on physical biometric characteristics such as fingerprint or iris can provide positive identification with a very high accuracy. However, the biometrics-based methods assume that the physical characteristics of an individual (as captured by a sensor) used for identification are distinctive. Identical twins have the closest genetics-based relationship and, therefore, the maximum similarity between fingerprints is expected to be found among identical twins. We show that a state-of-the-art automatic fingerprint identification system can successfully distinguish identical twins though with a slightly lower accuracy than nontwins. More... »

PAGES

211-217

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/3-540-45344-x_30

DOI

http://dx.doi.org/10.1007/3-540-45344-x_30

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1012028873


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Dept. of Comp. Sci. and Eng., Michigan State University, 48824, East Lansing, MI", 
          "id": "http://www.grid.ac/institutes/grid.17088.36", 
          "name": [
            "Dept. of Comp. Sci. and Eng., Michigan State University, 48824, East Lansing, MI"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jain", 
        "givenName": "Anil K.", 
        "id": "sg:person.01031110710.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01031110710.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dept. of Comp. Sci. and Eng., Michigan State University, 48824, East Lansing, MI", 
          "id": "http://www.grid.ac/institutes/grid.17088.36", 
          "name": [
            "Dept. of Comp. Sci. and Eng., Michigan State University, 48824, East Lansing, MI"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Prabhakar", 
        "givenName": "Salil", 
        "id": "sg:person.014036111605.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014036111605.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IBM T. J. Watson Research Center, 10598, Yorktown Heights, NY", 
          "id": "http://www.grid.ac/institutes/grid.481554.9", 
          "name": [
            "IBM T. J. Watson Research Center, 10598, Yorktown Heights, NY"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pankanti", 
        "givenName": "Sharath", 
        "id": "sg:person.015316344273.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015316344273.98"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2001-08-17", 
    "datePublishedReg": "2001-08-17", 
    "description": "Automatic identification methods based on physical biometric characteristics such as fingerprint or iris can provide positive identification with a very high accuracy. However, the biometrics-based methods assume that the physical characteristics of an individual (as captured by a sensor) used for identification are distinctive. Identical twins have the closest genetics-based relationship and, therefore, the maximum similarity between fingerprints is expected to be found among identical twins. We show that a state-of-the-art automatic fingerprint identification system can successfully distinguish identical twins though with a slightly lower accuracy than nontwins.", 
    "editor": [
      {
        "familyName": "Bigun", 
        "givenName": "Josef", 
        "type": "Person"
      }, 
      {
        "familyName": "Smeraldi", 
        "givenName": "Fabrizio", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/3-540-45344-x_30", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-42216-7", 
        "978-3-540-45344-4"
      ], 
      "name": "Audio- and Video-Based Biometric Person Authentication", 
      "type": "Book"
    }, 
    "keywords": [
      "automatic fingerprint identification system", 
      "closest genetics-based relationship", 
      "biometric-based methods", 
      "fingerprint identification system", 
      "automatic identification method", 
      "biometric characteristics", 
      "identification system", 
      "low accuracy", 
      "high accuracy", 
      "maximum similarity", 
      "identification method", 
      "fingerprints", 
      "accuracy", 
      "iris", 
      "discriminability", 
      "method", 
      "system", 
      "identification", 
      "twins", 
      "similarity", 
      "characteristics", 
      "state", 
      "physical characteristics", 
      "positive identification", 
      "relationship", 
      "identical twins", 
      "individuals", 
      "nontwins"
    ], 
    "name": "Twin Test: On Discriminability of Fingerprints", 
    "pagination": "211-217", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1012028873"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/3-540-45344-x_30"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/3-540-45344-x_30", 
      "https://app.dimensions.ai/details/publication/pub.1012028873"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-12-01T06:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/chapter/chapter_409.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/3-540-45344-x_30"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-540-45344-x_30'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-540-45344-x_30'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-540-45344-x_30'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-540-45344-x_30'


 

This table displays all metadata directly associated to this object as RDF triples.

109 TRIPLES      22 PREDICATES      52 URIs      45 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/3-540-45344-x_30 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N4b14e70439b34018aee873f8e3f10df9
4 schema:datePublished 2001-08-17
5 schema:datePublishedReg 2001-08-17
6 schema:description Automatic identification methods based on physical biometric characteristics such as fingerprint or iris can provide positive identification with a very high accuracy. However, the biometrics-based methods assume that the physical characteristics of an individual (as captured by a sensor) used for identification are distinctive. Identical twins have the closest genetics-based relationship and, therefore, the maximum similarity between fingerprints is expected to be found among identical twins. We show that a state-of-the-art automatic fingerprint identification system can successfully distinguish identical twins though with a slightly lower accuracy than nontwins.
7 schema:editor Na9500993ce394bc0b577f4369903ce88
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf Ne9b0f34d2ade407e8e3ec5be1c677a41
11 schema:keywords accuracy
12 automatic fingerprint identification system
13 automatic identification method
14 biometric characteristics
15 biometric-based methods
16 characteristics
17 closest genetics-based relationship
18 discriminability
19 fingerprint identification system
20 fingerprints
21 high accuracy
22 identical twins
23 identification
24 identification method
25 identification system
26 individuals
27 iris
28 low accuracy
29 maximum similarity
30 method
31 nontwins
32 physical characteristics
33 positive identification
34 relationship
35 similarity
36 state
37 system
38 twins
39 schema:name Twin Test: On Discriminability of Fingerprints
40 schema:pagination 211-217
41 schema:productId N6d623366525b465fac803c78fae84b19
42 Nd6f6e9c58d6748768226f5b8676f62c8
43 schema:publisher N6613c76b0a0249819a4dc7c91788f29a
44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012028873
45 https://doi.org/10.1007/3-540-45344-x_30
46 schema:sdDatePublished 2022-12-01T06:53
47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
48 schema:sdPublisher N1560dfee23324a1586c5eaefb17600b7
49 schema:url https://doi.org/10.1007/3-540-45344-x_30
50 sgo:license sg:explorer/license/
51 sgo:sdDataset chapters
52 rdf:type schema:Chapter
53 N1560dfee23324a1586c5eaefb17600b7 schema:name Springer Nature - SN SciGraph project
54 rdf:type schema:Organization
55 N4b14e70439b34018aee873f8e3f10df9 rdf:first sg:person.01031110710.30
56 rdf:rest N91b35f860ea74691a57f47a4658c5348
57 N6613c76b0a0249819a4dc7c91788f29a schema:name Springer Nature
58 rdf:type schema:Organisation
59 N6d623366525b465fac803c78fae84b19 schema:name dimensions_id
60 schema:value pub.1012028873
61 rdf:type schema:PropertyValue
62 N77caaed7e5f44ea6b09e25a43623e2a9 rdf:first Ne2dee20970bd412eb3812df98e1ed2b6
63 rdf:rest rdf:nil
64 N91b35f860ea74691a57f47a4658c5348 rdf:first sg:person.014036111605.32
65 rdf:rest Nb0894b36ab1a468c9ee93982d49e18ba
66 Na9500993ce394bc0b577f4369903ce88 rdf:first Nd17803370a39452ca383353d84d9e726
67 rdf:rest N77caaed7e5f44ea6b09e25a43623e2a9
68 Nb0894b36ab1a468c9ee93982d49e18ba rdf:first sg:person.015316344273.98
69 rdf:rest rdf:nil
70 Nd17803370a39452ca383353d84d9e726 schema:familyName Bigun
71 schema:givenName Josef
72 rdf:type schema:Person
73 Nd6f6e9c58d6748768226f5b8676f62c8 schema:name doi
74 schema:value 10.1007/3-540-45344-x_30
75 rdf:type schema:PropertyValue
76 Ne2dee20970bd412eb3812df98e1ed2b6 schema:familyName Smeraldi
77 schema:givenName Fabrizio
78 rdf:type schema:Person
79 Ne9b0f34d2ade407e8e3ec5be1c677a41 schema:isbn 978-3-540-42216-7
80 978-3-540-45344-4
81 schema:name Audio- and Video-Based Biometric Person Authentication
82 rdf:type schema:Book
83 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
84 schema:name Information and Computing Sciences
85 rdf:type schema:DefinedTerm
86 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
87 schema:name Artificial Intelligence and Image Processing
88 rdf:type schema:DefinedTerm
89 sg:person.01031110710.30 schema:affiliation grid-institutes:grid.17088.36
90 schema:familyName Jain
91 schema:givenName Anil K.
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01031110710.30
93 rdf:type schema:Person
94 sg:person.014036111605.32 schema:affiliation grid-institutes:grid.17088.36
95 schema:familyName Prabhakar
96 schema:givenName Salil
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014036111605.32
98 rdf:type schema:Person
99 sg:person.015316344273.98 schema:affiliation grid-institutes:grid.481554.9
100 schema:familyName Pankanti
101 schema:givenName Sharath
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015316344273.98
103 rdf:type schema:Person
104 grid-institutes:grid.17088.36 schema:alternateName Dept. of Comp. Sci. and Eng., Michigan State University, 48824, East Lansing, MI
105 schema:name Dept. of Comp. Sci. and Eng., Michigan State University, 48824, East Lansing, MI
106 rdf:type schema:Organization
107 grid-institutes:grid.481554.9 schema:alternateName IBM T. J. Watson Research Center, 10598, Yorktown Heights, NY
108 schema:name IBM T. J. Watson Research Center, 10598, Yorktown Heights, NY
109 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...