A Machine Learning Approach to Workflow Management View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2000

AUTHORS

Joachim Herbst

ABSTRACT

There has recently been some interest in applying machine learning techniques to support the acquisition and adaptation of workflow models. The different learning algorithms, that have been proposed, share some restrictions, which may prevent them from being used in practice. Approaches applying techniques from grammatical inference are restricted to sequential workflows. Other algorithms allowing concurrency require unique activity nodes. This contribution shows how the basic principle of our previous approach to sequential workflow induction can be generalized, so that it is able to deal with concurrency. It does not require unique activity nodes. The presented approach uses a log-likelihood guided search in the space of workflow models, that starts with a most general workflow model containing unique activity nodes. Two split operators are available for specialization. More... »

PAGES

183-194

Book

TITLE

Machine Learning: ECML 2000

ISBN

978-3-540-67602-7
978-3-540-45164-8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/3-540-45164-1_19

DOI

http://dx.doi.org/10.1007/3-540-45164-1_19

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1019466628


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Research and Technology, DaimlerChrysler AG, P.O. Box 2360, 89013, Ulm, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5433.1", 
          "name": [
            "Research and Technology, DaimlerChrysler AG, P.O. Box 2360, 89013, Ulm, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Herbst", 
        "givenName": "Joachim", 
        "id": "sg:person.014727747331.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014727747331.21"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2000", 
    "datePublishedReg": "2000-01-01", 
    "description": "There has recently been some interest in applying machine learning techniques to support the acquisition and adaptation of workflow models. The different learning algorithms, that have been proposed, share some restrictions, which may prevent them from being used in practice. Approaches applying techniques from grammatical inference are restricted to sequential workflows. Other algorithms allowing concurrency require unique activity nodes. This contribution shows how the basic principle of our previous approach to sequential workflow induction can be generalized, so that it is able to deal with concurrency. It does not require unique activity nodes. The presented approach uses a log-likelihood guided search in the space of workflow models, that starts with a most general workflow model containing unique activity nodes. Two split operators are available for specialization.", 
    "editor": [
      {
        "familyName": "L\u00f3pez de M\u00e1ntaras", 
        "givenName": "Ramon", 
        "type": "Person"
      }, 
      {
        "familyName": "Plaza", 
        "givenName": "Enric", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/3-540-45164-1_19", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-540-67602-7", 
        "978-3-540-45164-8"
      ], 
      "name": "Machine Learning: ECML 2000", 
      "type": "Book"
    }, 
    "keywords": [
      "workflow model", 
      "activity nodes", 
      "different learning algorithms", 
      "workflow management", 
      "learning algorithm", 
      "grammatical inference", 
      "previous approaches", 
      "sequential workflow", 
      "presented approach", 
      "concurrency", 
      "nodes", 
      "algorithm", 
      "machine", 
      "workflow", 
      "split operator", 
      "technique", 
      "basic principles", 
      "model", 
      "search", 
      "operators", 
      "inference", 
      "acquisition", 
      "space", 
      "management", 
      "principles", 
      "adaptation", 
      "interest", 
      "restriction", 
      "contribution", 
      "practice", 
      "specialization", 
      "approach", 
      "induction", 
      "unique activity nodes", 
      "sequential workflow induction", 
      "workflow induction", 
      "general workflow model"
    ], 
    "name": "A Machine Learning Approach to Workflow Management", 
    "pagination": "183-194", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1019466628"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/3-540-45164-1_19"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/3-540-45164-1_19", 
      "https://app.dimensions.ai/details/publication/pub.1019466628"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-11-01T18:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/chapter/chapter_324.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/3-540-45164-1_19"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-540-45164-1_19'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-540-45164-1_19'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-540-45164-1_19'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-540-45164-1_19'


 

This table displays all metadata directly associated to this object as RDF triples.

102 TRIPLES      23 PREDICATES      63 URIs      56 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/3-540-45164-1_19 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nd363e35e293f4953a45162de96a63dee
4 schema:datePublished 2000
5 schema:datePublishedReg 2000-01-01
6 schema:description There has recently been some interest in applying machine learning techniques to support the acquisition and adaptation of workflow models. The different learning algorithms, that have been proposed, share some restrictions, which may prevent them from being used in practice. Approaches applying techniques from grammatical inference are restricted to sequential workflows. Other algorithms allowing concurrency require unique activity nodes. This contribution shows how the basic principle of our previous approach to sequential workflow induction can be generalized, so that it is able to deal with concurrency. It does not require unique activity nodes. The presented approach uses a log-likelihood guided search in the space of workflow models, that starts with a most general workflow model containing unique activity nodes. Two split operators are available for specialization.
7 schema:editor Nd789894f481b418a8ce51038f24db968
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree true
11 schema:isPartOf N90766458b85a4874b90586b75a19d86e
12 schema:keywords acquisition
13 activity nodes
14 adaptation
15 algorithm
16 approach
17 basic principles
18 concurrency
19 contribution
20 different learning algorithms
21 general workflow model
22 grammatical inference
23 induction
24 inference
25 interest
26 learning algorithm
27 machine
28 management
29 model
30 nodes
31 operators
32 practice
33 presented approach
34 previous approaches
35 principles
36 restriction
37 search
38 sequential workflow
39 sequential workflow induction
40 space
41 specialization
42 split operator
43 technique
44 unique activity nodes
45 workflow
46 workflow induction
47 workflow management
48 workflow model
49 schema:name A Machine Learning Approach to Workflow Management
50 schema:pagination 183-194
51 schema:productId N530f8e4b6d0b4597864e016b7f0e3f41
52 N899f560bc20e4802b1cc972b92cc1dff
53 schema:publisher N5a36e52acab84cb39d1846d0250d4fa2
54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019466628
55 https://doi.org/10.1007/3-540-45164-1_19
56 schema:sdDatePublished 2021-11-01T18:55
57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
58 schema:sdPublisher Ne396bf666bcc49cabf720ceda8f7368a
59 schema:url https://doi.org/10.1007/3-540-45164-1_19
60 sgo:license sg:explorer/license/
61 sgo:sdDataset chapters
62 rdf:type schema:Chapter
63 N01f272f8b2104bef8ccaf0a0f54f5709 rdf:first Nfcb43a16507c4fdc90e6b8db073bb602
64 rdf:rest rdf:nil
65 N530f8e4b6d0b4597864e016b7f0e3f41 schema:name dimensions_id
66 schema:value pub.1019466628
67 rdf:type schema:PropertyValue
68 N5a36e52acab84cb39d1846d0250d4fa2 schema:name Springer Nature
69 rdf:type schema:Organisation
70 N899f560bc20e4802b1cc972b92cc1dff schema:name doi
71 schema:value 10.1007/3-540-45164-1_19
72 rdf:type schema:PropertyValue
73 N90766458b85a4874b90586b75a19d86e schema:isbn 978-3-540-45164-8
74 978-3-540-67602-7
75 schema:name Machine Learning: ECML 2000
76 rdf:type schema:Book
77 Ncf676b5240714a5bb2fc50f9a4dbd560 schema:familyName López de Mántaras
78 schema:givenName Ramon
79 rdf:type schema:Person
80 Nd363e35e293f4953a45162de96a63dee rdf:first sg:person.014727747331.21
81 rdf:rest rdf:nil
82 Nd789894f481b418a8ce51038f24db968 rdf:first Ncf676b5240714a5bb2fc50f9a4dbd560
83 rdf:rest N01f272f8b2104bef8ccaf0a0f54f5709
84 Ne396bf666bcc49cabf720ceda8f7368a schema:name Springer Nature - SN SciGraph project
85 rdf:type schema:Organization
86 Nfcb43a16507c4fdc90e6b8db073bb602 schema:familyName Plaza
87 schema:givenName Enric
88 rdf:type schema:Person
89 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
90 schema:name Information and Computing Sciences
91 rdf:type schema:DefinedTerm
92 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
93 schema:name Artificial Intelligence and Image Processing
94 rdf:type schema:DefinedTerm
95 sg:person.014727747331.21 schema:affiliation grid-institutes:grid.5433.1
96 schema:familyName Herbst
97 schema:givenName Joachim
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014727747331.21
99 rdf:type schema:Person
100 grid-institutes:grid.5433.1 schema:alternateName Research and Technology, DaimlerChrysler AG, P.O. Box 2360, 89013, Ulm, Germany
101 schema:name Research and Technology, DaimlerChrysler AG, P.O. Box 2360, 89013, Ulm, Germany
102 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...