A Low-Scan Incremental Association Rule Maintenance Method Based on the Apriori Property View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2001-05-16

AUTHORS

Zequn Zhou , C.I. Ezeife

ABSTRACT

As new transactions update data sources and subsequently the data warehouse, the previously discovered association rules in the old database may no longer be interesting rules in the new database. Furthermore, some new interesting rules may appear in the new database. This paper presents a new algorithm for efficiently maintaining discovered association rules in the updated database, which starts by computing the high n level large itemsets in the new database using the available high n level large itemsets in the old database. Some parts of the n-1; n-2,...,1 level large itemsets can then be quickly generated by applying the apriori property, thereby avoiding the overhead of calculating many lower level large itemsets that involve huge table scans. More... »

PAGES

26-35

Book

TITLE

Advances in Artifical Intelligence

ISBN

978-3-540-61291-9
978-3-540-68450-3

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/3-540-45153-6_3

DOI

http://dx.doi.org/10.1007/3-540-45153-6_3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1041583320


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Windsor", 
          "id": "https://www.grid.ac/institutes/grid.267455.7", 
          "name": [
            "School of Computer Science University of Windsor, N9B 3P4, Windsor, Ontario, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhou", 
        "givenName": "Zequn", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Windsor", 
          "id": "https://www.grid.ac/institutes/grid.267455.7", 
          "name": [
            "School of Computer Science University of Windsor, N9B 3P4, Windsor, Ontario, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ezeife", 
        "givenName": "C.I.", 
        "id": "sg:person.01200460536.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200460536.41"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1109/icde.1996.492094", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094013387"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/9789812819536_0020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096084080"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2001-05-16", 
    "datePublishedReg": "2001-05-16", 
    "description": "As new transactions update data sources and subsequently the data warehouse, the previously discovered association rules in the old database may no longer be interesting rules in the new database. Furthermore, some new interesting rules may appear in the new database. This paper presents a new algorithm for efficiently maintaining discovered association rules in the updated database, which starts by computing the high n level large itemsets in the new database using the available high n level large itemsets in the old database. Some parts of the n-1; n-2,...,1 level large itemsets can then be quickly generated by applying the apriori property, thereby avoiding the overhead of calculating many lower level large itemsets that involve huge table scans.", 
    "editor": [
      {
        "familyName": "McCalla", 
        "givenName": "Gordon", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/3-540-45153-6_3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-61291-9", 
        "978-3-540-68450-3"
      ], 
      "name": "Advances in Artifical Intelligence", 
      "type": "Book"
    }, 
    "name": "A Low-Scan Incremental Association Rule Maintenance Method Based on the Apriori Property", 
    "pagination": "26-35", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1041583320"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/3-540-45153-6_3"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c616a8bd836fea9657ef9a95c1a81cd295e2d98b3ea6e67821d4f05164230529"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/3-540-45153-6_3", 
      "https://app.dimensions.ai/details/publication/pub.1041583320"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T07:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000356_0000000356/records_57865_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F3-540-45153-6_3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-540-45153-6_3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-540-45153-6_3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-540-45153-6_3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-540-45153-6_3'


 

This table displays all metadata directly associated to this object as RDF triples.

77 TRIPLES      23 PREDICATES      28 URIs      19 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/3-540-45153-6_3 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author N073731a9ebb24a73afb6d0d76a228d29
4 schema:citation https://doi.org/10.1109/icde.1996.492094
5 https://doi.org/10.1142/9789812819536_0020
6 schema:datePublished 2001-05-16
7 schema:datePublishedReg 2001-05-16
8 schema:description As new transactions update data sources and subsequently the data warehouse, the previously discovered association rules in the old database may no longer be interesting rules in the new database. Furthermore, some new interesting rules may appear in the new database. This paper presents a new algorithm for efficiently maintaining discovered association rules in the updated database, which starts by computing the high n level large itemsets in the new database using the available high n level large itemsets in the old database. Some parts of the n-1; n-2,...,1 level large itemsets can then be quickly generated by applying the apriori property, thereby avoiding the overhead of calculating many lower level large itemsets that involve huge table scans.
9 schema:editor N5f9e9db281ea40938e18830b59d360d5
10 schema:genre chapter
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf Nf32b212be9304c1e9b13081ef02b0ba3
14 schema:name A Low-Scan Incremental Association Rule Maintenance Method Based on the Apriori Property
15 schema:pagination 26-35
16 schema:productId N672f370e17954ec8b0b437abe04b9e90
17 Nb3218d95d5cf42a0a28c03932f8597a5
18 Nd3e81923fd13404e8b74a33ebea5dfa1
19 schema:publisher N8f668321d39b4d94a25c9bbd36ec11ac
20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041583320
21 https://doi.org/10.1007/3-540-45153-6_3
22 schema:sdDatePublished 2019-04-16T07:29
23 schema:sdLicense https://scigraph.springernature.com/explorer/license/
24 schema:sdPublisher N44a891ae950140ee94ad663091ac37a0
25 schema:url https://link.springer.com/10.1007%2F3-540-45153-6_3
26 sgo:license sg:explorer/license/
27 sgo:sdDataset chapters
28 rdf:type schema:Chapter
29 N073731a9ebb24a73afb6d0d76a228d29 rdf:first N416176306bac46eb9ef30a5777fe1112
30 rdf:rest N1dced81d03f84228a7c4bb2256693008
31 N1dced81d03f84228a7c4bb2256693008 rdf:first sg:person.01200460536.41
32 rdf:rest rdf:nil
33 N416176306bac46eb9ef30a5777fe1112 schema:affiliation https://www.grid.ac/institutes/grid.267455.7
34 schema:familyName Zhou
35 schema:givenName Zequn
36 rdf:type schema:Person
37 N44a891ae950140ee94ad663091ac37a0 schema:name Springer Nature - SN SciGraph project
38 rdf:type schema:Organization
39 N5f9e9db281ea40938e18830b59d360d5 rdf:first N641179f7a7a346cbb57c9a61f473083f
40 rdf:rest rdf:nil
41 N641179f7a7a346cbb57c9a61f473083f schema:familyName McCalla
42 schema:givenName Gordon
43 rdf:type schema:Person
44 N672f370e17954ec8b0b437abe04b9e90 schema:name dimensions_id
45 schema:value pub.1041583320
46 rdf:type schema:PropertyValue
47 N8f668321d39b4d94a25c9bbd36ec11ac schema:location Berlin, Heidelberg
48 schema:name Springer Berlin Heidelberg
49 rdf:type schema:Organisation
50 Nb3218d95d5cf42a0a28c03932f8597a5 schema:name doi
51 schema:value 10.1007/3-540-45153-6_3
52 rdf:type schema:PropertyValue
53 Nd3e81923fd13404e8b74a33ebea5dfa1 schema:name readcube_id
54 schema:value c616a8bd836fea9657ef9a95c1a81cd295e2d98b3ea6e67821d4f05164230529
55 rdf:type schema:PropertyValue
56 Nf32b212be9304c1e9b13081ef02b0ba3 schema:isbn 978-3-540-61291-9
57 978-3-540-68450-3
58 schema:name Advances in Artifical Intelligence
59 rdf:type schema:Book
60 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
61 schema:name Information and Computing Sciences
62 rdf:type schema:DefinedTerm
63 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
64 schema:name Information Systems
65 rdf:type schema:DefinedTerm
66 sg:person.01200460536.41 schema:affiliation https://www.grid.ac/institutes/grid.267455.7
67 schema:familyName Ezeife
68 schema:givenName C.I.
69 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200460536.41
70 rdf:type schema:Person
71 https://doi.org/10.1109/icde.1996.492094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094013387
72 rdf:type schema:CreativeWork
73 https://doi.org/10.1142/9789812819536_0020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096084080
74 rdf:type schema:CreativeWork
75 https://www.grid.ac/institutes/grid.267455.7 schema:alternateName University of Windsor
76 schema:name School of Computer Science University of Windsor, N9B 3P4, Windsor, Ontario, Canada
77 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...