Ontology type: schema:Chapter
2003-06-24
AUTHORSTsai-Hung Fan , Shufen Lee , Hsueh-I Lu , Tsung-Shan Tsou , Tsai-Cheng Wang , Adam Yao
ABSTRACTWe study a fundamental sequence algorithm arising from bioinformatics. Given two integers L and U and a sequence A of n numbers, the maximum-sum segment problem is to find a segment A[i,j] of A with L ≤ j+i+1 ≤ U that maximizes A[i]+A[i+1]+···+A[j]. The problem finds applications in finding repeats, designing low complexity filter, and locating segments with rich C+G content for biomolecular sequences. The best known algorithm, due to Lin, Jiang, and Chao, runs in O(n) time, based upon a clever technique called left-negative decomposition for A. In the present paper, we present a new O(n)-time algorithm that bypasses the left-negative decomposition. As a result, our algorithm has the capability to handle the input sequence in an online manner, which is clearly an important feature to cope with genome-scale sequences. We also show how to exploit the sparsity in the input sequence: If A is representable in O(k) space in some format, then our algorithm runs in O(k) time. Moreover, practical implementation of our algorithm running on the rice genome helps us to identify a very long repeat structure in rice chromosome 1 that is previously unknown. More... »
PAGES251-257
Implementation and Application of Automata
ISBN
978-3-540-40561-0
978-3-540-45089-4
http://scigraph.springernature.com/pub.10.1007/3-540-45089-0_23
DOIhttp://dx.doi.org/10.1007/3-540-45089-0_23
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1051758054
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Applied Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Institute of Statistics, National Central University, 320, Chung-li, Taiwan, R.O.C.",
"id": "http://www.grid.ac/institutes/grid.37589.30",
"name": [
"Institute of Statistics, National Central University, 320, Chung-li, Taiwan, R.O.C."
],
"type": "Organization"
},
"familyName": "Fan",
"givenName": "Tsai-Hung",
"id": "sg:person.01024023247.33",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024023247.33"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute of Biomedical Sciences, Academia Sinica, 115, Taipei, Taiwan, R.O.C.",
"id": "http://www.grid.ac/institutes/grid.482251.8",
"name": [
"Institute of Biomedical Sciences, Academia Sinica, 115, Taipei, Taiwan, R.O.C."
],
"type": "Organization"
},
"familyName": "Lee",
"givenName": "Shufen",
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute of Information Science, Academia Sinica, 115, Taipei, Taiwan, R.O.C.",
"id": "http://www.grid.ac/institutes/grid.28665.3f",
"name": [
"Institute of Information Science, Academia Sinica, 115, Taipei, Taiwan, R.O.C."
],
"type": "Organization"
},
"familyName": "Lu",
"givenName": "Hsueh-I",
"id": "sg:person.013345515575.46",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013345515575.46"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute of Statistics, National Central University, 320, Chung-li, Taiwan, R.O.C.",
"id": "http://www.grid.ac/institutes/grid.37589.30",
"name": [
"Institute of Statistics, National Central University, 320, Chung-li, Taiwan, R.O.C."
],
"type": "Organization"
},
"familyName": "Tsou",
"givenName": "Tsung-Shan",
"id": "sg:person.0621035037.51",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621035037.51"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute of Biomedical Sciences, Academia Sinica, 115, Taipei, Taiwan, R.O.C.",
"id": "http://www.grid.ac/institutes/grid.482251.8",
"name": [
"Institute of Biomedical Sciences, Academia Sinica, 115, Taipei, Taiwan, R.O.C."
],
"type": "Organization"
},
"familyName": "Wang",
"givenName": "Tsai-Cheng",
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute of Biomedical Sciences, Academia Sinica, 115, Taipei, Taiwan, R.O.C.",
"id": "http://www.grid.ac/institutes/grid.482251.8",
"name": [
"Institute of Biomedical Sciences, Academia Sinica, 115, Taipei, Taiwan, R.O.C."
],
"type": "Organization"
},
"familyName": "Yao",
"givenName": "Adam",
"type": "Person"
}
],
"datePublished": "2003-06-24",
"datePublishedReg": "2003-06-24",
"description": "We study a fundamental sequence algorithm arising from bioinformatics. Given two integers L and U and a sequence A of n numbers, the maximum-sum segment problem is to find a segment A[i,j] of A with L \u2264 j+i+1 \u2264 U that maximizes A[i]+A[i+1]+\u00b7\u00b7\u00b7+A[j]. The problem finds applications in finding repeats, designing low complexity filter, and locating segments with rich C+G content for biomolecular sequences. The best known algorithm, due to Lin, Jiang, and Chao, runs in O(n) time, based upon a clever technique called left-negative decomposition for A. In the present paper, we present a new O(n)-time algorithm that bypasses the left-negative decomposition. As a result, our algorithm has the capability to handle the input sequence in an online manner, which is clearly an important feature to cope with genome-scale sequences. We also show how to exploit the sparsity in the input sequence: If A is representable in O(k) space in some format, then our algorithm runs in O(k) time. Moreover, practical implementation of our algorithm running on the rice genome helps us to identify a very long repeat structure in rice chromosome 1 that is previously unknown.",
"editor": [
{
"familyName": "Ibarra",
"givenName": "Oscar H.",
"type": "Person"
},
{
"familyName": "Dang",
"givenName": "Zhe",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/3-540-45089-0_23",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-540-40561-0",
"978-3-540-45089-4"
],
"name": "Implementation and Application of Automata",
"type": "Book"
},
"keywords": [
"low-complexity filters",
"input sequence",
"complexity filters",
"biomolecular sequences",
"maximum sum segments",
"optimal algorithm",
"time algorithm",
"integer L",
"practical implementation",
"algorithm",
"sequence algorithm",
"online manner",
"maximum-sum segment problem",
"clever techniques",
"present paper",
"problem",
"chaos",
"important features",
"sparsity",
"segment problems",
"decomposition",
"space",
"applications",
"sequence A",
"filter",
"bioinformatics",
"genome-scale sequences",
"Lin",
"Jiang",
"sequence",
"technique",
"structure",
"number",
"implementation",
"time",
"results",
"capability",
"features",
"segments",
"manner",
"format",
"content",
"rice chromosome 1",
"repeat structure",
"rice genome",
"genome",
"paper",
"repeats",
"chromosome 1"
],
"name": "An Optimal Algorithm for Maximum-Sum Segment and Its Application in Bioinformatics",
"pagination": "251-257",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1051758054"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/3-540-45089-0_23"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/3-540-45089-0_23",
"https://app.dimensions.ai/details/publication/pub.1051758054"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-10T10:38",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/chapter/chapter_137.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/3-540-45089-0_23"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-540-45089-0_23'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-540-45089-0_23'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-540-45089-0_23'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-540-45089-0_23'
This table displays all metadata directly associated to this object as RDF triples.
152 TRIPLES
23 PREDICATES
74 URIs
67 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/3-540-45089-0_23 | schema:about | anzsrc-for:01 |
2 | ″ | ″ | anzsrc-for:0102 |
3 | ″ | schema:author | N7c142a9c0cb247a7892b15c6a01c8cae |
4 | ″ | schema:datePublished | 2003-06-24 |
5 | ″ | schema:datePublishedReg | 2003-06-24 |
6 | ″ | schema:description | We study a fundamental sequence algorithm arising from bioinformatics. Given two integers L and U and a sequence A of n numbers, the maximum-sum segment problem is to find a segment A[i,j] of A with L ≤ j+i+1 ≤ U that maximizes A[i]+A[i+1]+···+A[j]. The problem finds applications in finding repeats, designing low complexity filter, and locating segments with rich C+G content for biomolecular sequences. The best known algorithm, due to Lin, Jiang, and Chao, runs in O(n) time, based upon a clever technique called left-negative decomposition for A. In the present paper, we present a new O(n)-time algorithm that bypasses the left-negative decomposition. As a result, our algorithm has the capability to handle the input sequence in an online manner, which is clearly an important feature to cope with genome-scale sequences. We also show how to exploit the sparsity in the input sequence: If A is representable in O(k) space in some format, then our algorithm runs in O(k) time. Moreover, practical implementation of our algorithm running on the rice genome helps us to identify a very long repeat structure in rice chromosome 1 that is previously unknown. |
7 | ″ | schema:editor | N8424be24477a4a228e8243bfd19e1aa6 |
8 | ″ | schema:genre | chapter |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | false |
11 | ″ | schema:isPartOf | Nb6bdc0e6e2384b60ba6f2f0c01f5c317 |
12 | ″ | schema:keywords | Jiang |
13 | ″ | ″ | Lin |
14 | ″ | ″ | algorithm |
15 | ″ | ″ | applications |
16 | ″ | ″ | bioinformatics |
17 | ″ | ″ | biomolecular sequences |
18 | ″ | ″ | capability |
19 | ″ | ″ | chaos |
20 | ″ | ″ | chromosome 1 |
21 | ″ | ″ | clever techniques |
22 | ″ | ″ | complexity filters |
23 | ″ | ″ | content |
24 | ″ | ″ | decomposition |
25 | ″ | ″ | features |
26 | ″ | ″ | filter |
27 | ″ | ″ | format |
28 | ″ | ″ | genome |
29 | ″ | ″ | genome-scale sequences |
30 | ″ | ″ | implementation |
31 | ″ | ″ | important features |
32 | ″ | ″ | input sequence |
33 | ″ | ″ | integer L |
34 | ″ | ″ | low-complexity filters |
35 | ″ | ″ | manner |
36 | ″ | ″ | maximum sum segments |
37 | ″ | ″ | maximum-sum segment problem |
38 | ″ | ″ | number |
39 | ″ | ″ | online manner |
40 | ″ | ″ | optimal algorithm |
41 | ″ | ″ | paper |
42 | ″ | ″ | practical implementation |
43 | ″ | ″ | present paper |
44 | ″ | ″ | problem |
45 | ″ | ″ | repeat structure |
46 | ″ | ″ | repeats |
47 | ″ | ″ | results |
48 | ″ | ″ | rice chromosome 1 |
49 | ″ | ″ | rice genome |
50 | ″ | ″ | segment problems |
51 | ″ | ″ | segments |
52 | ″ | ″ | sequence |
53 | ″ | ″ | sequence A |
54 | ″ | ″ | sequence algorithm |
55 | ″ | ″ | space |
56 | ″ | ″ | sparsity |
57 | ″ | ″ | structure |
58 | ″ | ″ | technique |
59 | ″ | ″ | time |
60 | ″ | ″ | time algorithm |
61 | ″ | schema:name | An Optimal Algorithm for Maximum-Sum Segment and Its Application in Bioinformatics |
62 | ″ | schema:pagination | 251-257 |
63 | ″ | schema:productId | N4f3c21d61d8943fba6a978465a4d4263 |
64 | ″ | ″ | N57685b1aa66447d49b9bea6e3c3f7aba |
65 | ″ | schema:publisher | N09f073f7b9414c2cbebb8f75ee526983 |
66 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1051758054 |
67 | ″ | ″ | https://doi.org/10.1007/3-540-45089-0_23 |
68 | ″ | schema:sdDatePublished | 2022-05-10T10:38 |
69 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
70 | ″ | schema:sdPublisher | N7abefb2ce49e4d22b3af929188f97976 |
71 | ″ | schema:url | https://doi.org/10.1007/3-540-45089-0_23 |
72 | ″ | sgo:license | sg:explorer/license/ |
73 | ″ | sgo:sdDataset | chapters |
74 | ″ | rdf:type | schema:Chapter |
75 | N09f073f7b9414c2cbebb8f75ee526983 | schema:name | Springer Nature |
76 | ″ | rdf:type | schema:Organisation |
77 | N1699701380af44419ec6c81fd8a718fb | schema:familyName | Dang |
78 | ″ | schema:givenName | Zhe |
79 | ″ | rdf:type | schema:Person |
80 | N4f3c21d61d8943fba6a978465a4d4263 | schema:name | doi |
81 | ″ | schema:value | 10.1007/3-540-45089-0_23 |
82 | ″ | rdf:type | schema:PropertyValue |
83 | N57685b1aa66447d49b9bea6e3c3f7aba | schema:name | dimensions_id |
84 | ″ | schema:value | pub.1051758054 |
85 | ″ | rdf:type | schema:PropertyValue |
86 | N7abefb2ce49e4d22b3af929188f97976 | schema:name | Springer Nature - SN SciGraph project |
87 | ″ | rdf:type | schema:Organization |
88 | N7c142a9c0cb247a7892b15c6a01c8cae | rdf:first | sg:person.01024023247.33 |
89 | ″ | rdf:rest | Nda59bf1cecd1499e8d90d06f3c5155b6 |
90 | N80c9dc26f3d946af9dbebeeeb65644a3 | rdf:first | N9ddf58040b6f4afe8b2064c880f45e9e |
91 | ″ | rdf:rest | Na0c92959e9944bd5862edcab8fce0450 |
92 | N8424be24477a4a228e8243bfd19e1aa6 | rdf:first | Nd4d79dd558314693a66e217b7bf53df0 |
93 | ″ | rdf:rest | Ndb75fd1b15554a9e82cdb647046ec9fc |
94 | N860753f8a77245d9be41e1e0b67dd985 | rdf:first | sg:person.013345515575.46 |
95 | ″ | rdf:rest | Nde493863336f46a1a836f0dba494af01 |
96 | N8d2497bc149d400aa97a7b222686a994 | schema:affiliation | grid-institutes:grid.482251.8 |
97 | ″ | schema:familyName | Lee |
98 | ″ | schema:givenName | Shufen |
99 | ″ | rdf:type | schema:Person |
100 | N9ddf58040b6f4afe8b2064c880f45e9e | schema:affiliation | grid-institutes:grid.482251.8 |
101 | ″ | schema:familyName | Wang |
102 | ″ | schema:givenName | Tsai-Cheng |
103 | ″ | rdf:type | schema:Person |
104 | Na0c92959e9944bd5862edcab8fce0450 | rdf:first | Ndc95be04e4574511b537ca3574991a73 |
105 | ″ | rdf:rest | rdf:nil |
106 | Nb6bdc0e6e2384b60ba6f2f0c01f5c317 | schema:isbn | 978-3-540-40561-0 |
107 | ″ | ″ | 978-3-540-45089-4 |
108 | ″ | schema:name | Implementation and Application of Automata |
109 | ″ | rdf:type | schema:Book |
110 | Nd4d79dd558314693a66e217b7bf53df0 | schema:familyName | Ibarra |
111 | ″ | schema:givenName | Oscar H. |
112 | ″ | rdf:type | schema:Person |
113 | Nda59bf1cecd1499e8d90d06f3c5155b6 | rdf:first | N8d2497bc149d400aa97a7b222686a994 |
114 | ″ | rdf:rest | N860753f8a77245d9be41e1e0b67dd985 |
115 | Ndb75fd1b15554a9e82cdb647046ec9fc | rdf:first | N1699701380af44419ec6c81fd8a718fb |
116 | ″ | rdf:rest | rdf:nil |
117 | Ndc95be04e4574511b537ca3574991a73 | schema:affiliation | grid-institutes:grid.482251.8 |
118 | ″ | schema:familyName | Yao |
119 | ″ | schema:givenName | Adam |
120 | ″ | rdf:type | schema:Person |
121 | Nde493863336f46a1a836f0dba494af01 | rdf:first | sg:person.0621035037.51 |
122 | ″ | rdf:rest | N80c9dc26f3d946af9dbebeeeb65644a3 |
123 | anzsrc-for:01 | schema:inDefinedTermSet | anzsrc-for: |
124 | ″ | schema:name | Mathematical Sciences |
125 | ″ | rdf:type | schema:DefinedTerm |
126 | anzsrc-for:0102 | schema:inDefinedTermSet | anzsrc-for: |
127 | ″ | schema:name | Applied Mathematics |
128 | ″ | rdf:type | schema:DefinedTerm |
129 | sg:person.01024023247.33 | schema:affiliation | grid-institutes:grid.37589.30 |
130 | ″ | schema:familyName | Fan |
131 | ″ | schema:givenName | Tsai-Hung |
132 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024023247.33 |
133 | ″ | rdf:type | schema:Person |
134 | sg:person.013345515575.46 | schema:affiliation | grid-institutes:grid.28665.3f |
135 | ″ | schema:familyName | Lu |
136 | ″ | schema:givenName | Hsueh-I |
137 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013345515575.46 |
138 | ″ | rdf:type | schema:Person |
139 | sg:person.0621035037.51 | schema:affiliation | grid-institutes:grid.37589.30 |
140 | ″ | schema:familyName | Tsou |
141 | ″ | schema:givenName | Tsung-Shan |
142 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621035037.51 |
143 | ″ | rdf:type | schema:Person |
144 | grid-institutes:grid.28665.3f | schema:alternateName | Institute of Information Science, Academia Sinica, 115, Taipei, Taiwan, R.O.C. |
145 | ″ | schema:name | Institute of Information Science, Academia Sinica, 115, Taipei, Taiwan, R.O.C. |
146 | ″ | rdf:type | schema:Organization |
147 | grid-institutes:grid.37589.30 | schema:alternateName | Institute of Statistics, National Central University, 320, Chung-li, Taiwan, R.O.C. |
148 | ″ | schema:name | Institute of Statistics, National Central University, 320, Chung-li, Taiwan, R.O.C. |
149 | ″ | rdf:type | schema:Organization |
150 | grid-institutes:grid.482251.8 | schema:alternateName | Institute of Biomedical Sciences, Academia Sinica, 115, Taipei, Taiwan, R.O.C. |
151 | ″ | schema:name | Institute of Biomedical Sciences, Academia Sinica, 115, Taipei, Taiwan, R.O.C. |
152 | ″ | rdf:type | schema:Organization |