Coupled Geodesic Active Regions for Image Segmentation: A Level Set Approach View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2000

AUTHORS

Nikos Paragios , Rachid Deriche

ABSTRACT

This paper presents a novel variational method for im age segmentation that unifies boundary and region-based information sources under the Geodesic Active Region framework. A statistical analysis based on the Minimum Description Length criterion and the Maximum Likelihood Principle for the observed density function (image histogram) using a mixture of Gaussian elements, indicates the number of the different regions and their intensity properties. Then, the boundary information is determined using a probabilistic edge detector, while the region information is estimated using the Gaussian components of the mixture model. The defined objective function is mini mized using a gradientdescent method where a level set approach is used to implement the resulting PDE system. According to the motion equations, the set of initial curves is propagated toward the segmentation result under the influence of boundary and region-based segmentation forces, and being constrained by a regularity force. The changes of topology are naturally handled thanks to the level set implementation, while a coupled multi-phase propagation is adopted that increases the robustness and the convergence rate by imposing the idea of mutually exclusive propagating curves. Finally, to reduce the required computational cost and the risk of convergence to local minima, a multi-scale approach is also considered. The performance of our method is demonstrated on a variety of real images. More... »

PAGES

224-240

References to SciGraph publications

Book

TITLE

Computer Vision — ECCV 2000

ISBN

978-3-540-67686-7
978-3-540-45053-5

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/3-540-45053-x_15

DOI

http://dx.doi.org/10.1007/3-540-45053-x_15

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1027676543


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Siemens (United States)", 
          "id": "https://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Imaging and Visualization Department, Siemens Corporate Research, 755 College Road East, Princeton, NJ\u00a008540, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Paragios", 
        "givenName": "Nikos", 
        "id": "sg:person.01133226671.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133226671.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "I.N.R.I.A, B.P. 93, 2004 Route des Lucioles, 06902\u00a0Sophia Antipolis Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Deriche", 
        "givenName": "Rachid", 
        "id": "sg:person.01010760563.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010760563.28"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00133570", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016330466", 
          "https://doi.org/10.1007/bf00133570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00133570", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016330466", 
          "https://doi.org/10.1007/bf00133570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0005-1098(78)90005-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018373874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0005-1098(78)90005-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018373874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-9991(88)90002-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024042944"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/1049-9660(91)90028-n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036232048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jcph.1996.0167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041079298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jcph.1995.1098", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043296861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00115697", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052168903", 
          "https://doi.org/10.1007/bf00115697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00115697", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052168903", 
          "https://doi.org/10.1007/bf00115697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/34.295913", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061156009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/34.49050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061156376"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/34.537343", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061156448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/42.544503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061170480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.1984.4767596", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061742090"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2000", 
    "datePublishedReg": "2000-01-01", 
    "description": "This paper presents a novel variational method for im age segmentation that unifies boundary and region-based information sources under the Geodesic Active Region framework. A statistical analysis based on the Minimum Description Length criterion and the Maximum Likelihood Principle for the observed density function (image histogram) using a mixture of Gaussian elements, indicates the number of the different regions and their intensity properties. Then, the boundary information is determined using a probabilistic edge detector, while the region information is estimated using the Gaussian components of the mixture model. The defined objective function is mini mized using a gradientdescent method where a level set approach is used to implement the resulting PDE system. According to the motion equations, the set of initial curves is propagated toward the segmentation result under the influence of boundary and region-based segmentation forces, and being constrained by a regularity force. The changes of topology are naturally handled thanks to the level set implementation, while a coupled multi-phase propagation is adopted that increases the robustness and the convergence rate by imposing the idea of mutually exclusive propagating curves. Finally, to reduce the required computational cost and the risk of convergence to local minima, a multi-scale approach is also considered. The performance of our method is demonstrated on a variety of real images.", 
    "editor": [
      {
        "familyName": "Vernon", 
        "givenName": "David", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/3-540-45053-x_15", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-67686-7", 
        "978-3-540-45053-5"
      ], 
      "name": "Computer Vision \u2014 ECCV 2000", 
      "type": "Book"
    }, 
    "name": "Coupled Geodesic Active Regions for Image Segmentation: A Level Set Approach", 
    "pagination": "224-240", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/3-540-45053-x_15"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "83d87b2183b5929f2fb637691f6b920068edafbe02f10cef76b78f159b4aa2c4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1027676543"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/3-540-45053-x_15", 
      "https://app.dimensions.ai/details/publication/pub.1027676543"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T18:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000260.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/3-540-45053-X_15"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-540-45053-x_15'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-540-45053-x_15'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-540-45053-x_15'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-540-45053-x_15'


 

This table displays all metadata directly associated to this object as RDF triples.

112 TRIPLES      23 PREDICATES      39 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/3-540-45053-x_15 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N894a47a925b14c5b981f93f2224bc189
4 schema:citation sg:pub.10.1007/bf00115697
5 sg:pub.10.1007/bf00133570
6 https://doi.org/10.1006/jcph.1995.1098
7 https://doi.org/10.1006/jcph.1996.0167
8 https://doi.org/10.1016/0005-1098(78)90005-5
9 https://doi.org/10.1016/0021-9991(88)90002-2
10 https://doi.org/10.1016/1049-9660(91)90028-n
11 https://doi.org/10.1109/34.295913
12 https://doi.org/10.1109/34.49050
13 https://doi.org/10.1109/34.537343
14 https://doi.org/10.1109/42.544503
15 https://doi.org/10.1109/tpami.1984.4767596
16 schema:datePublished 2000
17 schema:datePublishedReg 2000-01-01
18 schema:description This paper presents a novel variational method for im age segmentation that unifies boundary and region-based information sources under the Geodesic Active Region framework. A statistical analysis based on the Minimum Description Length criterion and the Maximum Likelihood Principle for the observed density function (image histogram) using a mixture of Gaussian elements, indicates the number of the different regions and their intensity properties. Then, the boundary information is determined using a probabilistic edge detector, while the region information is estimated using the Gaussian components of the mixture model. The defined objective function is mini mized using a gradientdescent method where a level set approach is used to implement the resulting PDE system. According to the motion equations, the set of initial curves is propagated toward the segmentation result under the influence of boundary and region-based segmentation forces, and being constrained by a regularity force. The changes of topology are naturally handled thanks to the level set implementation, while a coupled multi-phase propagation is adopted that increases the robustness and the convergence rate by imposing the idea of mutually exclusive propagating curves. Finally, to reduce the required computational cost and the risk of convergence to local minima, a multi-scale approach is also considered. The performance of our method is demonstrated on a variety of real images.
19 schema:editor Nbf232bde640c4556a603c81425ec58ae
20 schema:genre chapter
21 schema:inLanguage en
22 schema:isAccessibleForFree false
23 schema:isPartOf N6e0fcb2238dd4a68b4fcf3c65a47a575
24 schema:name Coupled Geodesic Active Regions for Image Segmentation: A Level Set Approach
25 schema:pagination 224-240
26 schema:productId N42a65574ed7243fbbc28ca83b4cbc265
27 N7ce654e6628942bbb77cd0433d414b3d
28 Na1b908d5cb10471281d1cbba72863f86
29 schema:publisher N19d4b4a8bd004c6284f37734d92ad9e3
30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027676543
31 https://doi.org/10.1007/3-540-45053-x_15
32 schema:sdDatePublished 2019-04-15T18:11
33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
34 schema:sdPublisher N661011cb46ce4893a3bb64113862d6df
35 schema:url http://link.springer.com/10.1007/3-540-45053-X_15
36 sgo:license sg:explorer/license/
37 sgo:sdDataset chapters
38 rdf:type schema:Chapter
39 N19d4b4a8bd004c6284f37734d92ad9e3 schema:location Berlin, Heidelberg
40 schema:name Springer Berlin Heidelberg
41 rdf:type schema:Organisation
42 N2ced3c136195423885af668ff87a88f7 schema:name I.N.R.I.A, B.P. 93, 2004 Route des Lucioles, 06902 Sophia Antipolis Cedex, France
43 rdf:type schema:Organization
44 N42a65574ed7243fbbc28ca83b4cbc265 schema:name doi
45 schema:value 10.1007/3-540-45053-x_15
46 rdf:type schema:PropertyValue
47 N42d333db76d54fa281d6577206de566a schema:familyName Vernon
48 schema:givenName David
49 rdf:type schema:Person
50 N661011cb46ce4893a3bb64113862d6df schema:name Springer Nature - SN SciGraph project
51 rdf:type schema:Organization
52 N6e0fcb2238dd4a68b4fcf3c65a47a575 schema:isbn 978-3-540-45053-5
53 978-3-540-67686-7
54 schema:name Computer Vision — ECCV 2000
55 rdf:type schema:Book
56 N7736cb704ff446c6a687c0bde5196ce9 rdf:first sg:person.01010760563.28
57 rdf:rest rdf:nil
58 N7ce654e6628942bbb77cd0433d414b3d schema:name dimensions_id
59 schema:value pub.1027676543
60 rdf:type schema:PropertyValue
61 N894a47a925b14c5b981f93f2224bc189 rdf:first sg:person.01133226671.57
62 rdf:rest N7736cb704ff446c6a687c0bde5196ce9
63 Na1b908d5cb10471281d1cbba72863f86 schema:name readcube_id
64 schema:value 83d87b2183b5929f2fb637691f6b920068edafbe02f10cef76b78f159b4aa2c4
65 rdf:type schema:PropertyValue
66 Nbf232bde640c4556a603c81425ec58ae rdf:first N42d333db76d54fa281d6577206de566a
67 rdf:rest rdf:nil
68 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
69 schema:name Information and Computing Sciences
70 rdf:type schema:DefinedTerm
71 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
72 schema:name Artificial Intelligence and Image Processing
73 rdf:type schema:DefinedTerm
74 sg:person.01010760563.28 schema:affiliation N2ced3c136195423885af668ff87a88f7
75 schema:familyName Deriche
76 schema:givenName Rachid
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010760563.28
78 rdf:type schema:Person
79 sg:person.01133226671.57 schema:affiliation https://www.grid.ac/institutes/grid.419233.e
80 schema:familyName Paragios
81 schema:givenName Nikos
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133226671.57
83 rdf:type schema:Person
84 sg:pub.10.1007/bf00115697 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052168903
85 https://doi.org/10.1007/bf00115697
86 rdf:type schema:CreativeWork
87 sg:pub.10.1007/bf00133570 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016330466
88 https://doi.org/10.1007/bf00133570
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1006/jcph.1995.1098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043296861
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1006/jcph.1996.0167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041079298
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1016/0005-1098(78)90005-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018373874
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1016/0021-9991(88)90002-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024042944
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1016/1049-9660(91)90028-n schema:sameAs https://app.dimensions.ai/details/publication/pub.1036232048
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1109/34.295913 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061156009
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1109/34.49050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061156376
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1109/34.537343 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061156448
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1109/42.544503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061170480
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1109/tpami.1984.4767596 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061742090
109 rdf:type schema:CreativeWork
110 https://www.grid.ac/institutes/grid.419233.e schema:alternateName Siemens (United States)
111 schema:name Imaging and Visualization Department, Siemens Corporate Research, 755 College Road East, Princeton, NJ 08540, USA
112 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...