Combining Fingerprint Classifiers View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2000-12-01

AUTHORS

Raffaele Cappelli , Dario Maio , Davide Maltoni

ABSTRACT

This paper explores several ways of combining the MASKS and MKL-based classifiers which we specifically designed for the fingerprint classification task. The advantages of coupling these distinct techniques are well evident; in particular, in the case of exclusive classification, the FBI challenge requiring a classification error ≤1% at 20% rejection was broken on NIST-DB14. More... »

PAGES

351-361

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/3-540-45014-9_34

DOI

http://dx.doi.org/10.1007/3-540-45014-9_34

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1032419393


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "DEIS, CSITE - CNR, Universit\u00e0 di Bologna, viale Risorgimento 2, 40136, Bologna, Italy", 
          "id": "http://www.grid.ac/institutes/grid.6292.f", 
          "name": [
            "DEIS, CSITE - CNR, Universit\u00e0 di Bologna, viale Risorgimento 2, 40136, Bologna, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cappelli", 
        "givenName": "Raffaele", 
        "id": "sg:person.011324641665.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011324641665.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "DEIS, CSITE - CNR, Universit\u00e0 di Bologna, viale Risorgimento 2, 40136, Bologna, Italy", 
          "id": "http://www.grid.ac/institutes/grid.6292.f", 
          "name": [
            "DEIS, CSITE - CNR, Universit\u00e0 di Bologna, viale Risorgimento 2, 40136, Bologna, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maio", 
        "givenName": "Dario", 
        "id": "sg:person.013075040365.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013075040365.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "DEIS, CSITE - CNR, Universit\u00e0 di Bologna, viale Risorgimento 2, 40136, Bologna, Italy", 
          "id": "http://www.grid.ac/institutes/grid.6292.f", 
          "name": [
            "DEIS, CSITE - CNR, Universit\u00e0 di Bologna, viale Risorgimento 2, 40136, Bologna, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maltoni", 
        "givenName": "Davide", 
        "id": "sg:person.01020634131.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01020634131.30"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2000-12-01", 
    "datePublishedReg": "2000-12-01", 
    "description": "This paper explores several ways of combining the MASKS and MKL-based classifiers which we specifically designed for the fingerprint classification task. The advantages of coupling these distinct techniques are well evident; in particular, in the case of exclusive classification, the FBI challenge requiring a classification error \u22641% at 20% rejection was broken on NIST-DB14.", 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/3-540-45014-9_34", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-67704-8", 
        "978-3-540-45014-6"
      ], 
      "name": "Multiple Classifier Systems", 
      "type": "Book"
    }, 
    "keywords": [
      "fingerprint classification task", 
      "classification task", 
      "NIST-DB14", 
      "fingerprint classifier", 
      "classification error", 
      "classifier", 
      "exclusive classification", 
      "distinct techniques", 
      "MKL", 
      "task", 
      "classification", 
      "challenges", 
      "error", 
      "advantages", 
      "technique", 
      "mask", 
      "way", 
      "cases", 
      "rejection", 
      "paper"
    ], 
    "name": "Combining Fingerprint Classifiers", 
    "pagination": "351-361", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1032419393"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/3-540-45014-9_34"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/3-540-45014-9_34", 
      "https://app.dimensions.ai/details/publication/pub.1032419393"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-12-01T06:47", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/chapter/chapter_18.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/3-540-45014-9_34"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-540-45014-9_34'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-540-45014-9_34'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-540-45014-9_34'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-540-45014-9_34'


 

This table displays all metadata directly associated to this object as RDF triples.

87 TRIPLES      21 PREDICATES      43 URIs      36 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/3-540-45014-9_34 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N4b6528867db24cc2a1f5a9bd7064aa4d
4 schema:datePublished 2000-12-01
5 schema:datePublishedReg 2000-12-01
6 schema:description This paper explores several ways of combining the MASKS and MKL-based classifiers which we specifically designed for the fingerprint classification task. The advantages of coupling these distinct techniques are well evident; in particular, in the case of exclusive classification, the FBI challenge requiring a classification error ≤1% at 20% rejection was broken on NIST-DB14.
7 schema:genre chapter
8 schema:isAccessibleForFree false
9 schema:isPartOf N35d9f6eb86fb406dbe50a6ddfbe3e5e6
10 schema:keywords MKL
11 NIST-DB14
12 advantages
13 cases
14 challenges
15 classification
16 classification error
17 classification task
18 classifier
19 distinct techniques
20 error
21 exclusive classification
22 fingerprint classification task
23 fingerprint classifier
24 mask
25 paper
26 rejection
27 task
28 technique
29 way
30 schema:name Combining Fingerprint Classifiers
31 schema:pagination 351-361
32 schema:productId N417d393f0e6a4a3c80aba6ebcfb29549
33 Nd469f7fa8f4e44679c3f382a4c1b1d14
34 schema:publisher N5529fcc957b84b4092a3f3d942906131
35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032419393
36 https://doi.org/10.1007/3-540-45014-9_34
37 schema:sdDatePublished 2022-12-01T06:47
38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
39 schema:sdPublisher N49d9674d52c24cbfb5c174a3c1684022
40 schema:url https://doi.org/10.1007/3-540-45014-9_34
41 sgo:license sg:explorer/license/
42 sgo:sdDataset chapters
43 rdf:type schema:Chapter
44 N069996ca33434a638a7d4d1e4617d1d6 rdf:first sg:person.01020634131.30
45 rdf:rest rdf:nil
46 N140c1abc9b904311a38324263fe6e311 rdf:first sg:person.013075040365.65
47 rdf:rest N069996ca33434a638a7d4d1e4617d1d6
48 N35d9f6eb86fb406dbe50a6ddfbe3e5e6 schema:isbn 978-3-540-45014-6
49 978-3-540-67704-8
50 schema:name Multiple Classifier Systems
51 rdf:type schema:Book
52 N417d393f0e6a4a3c80aba6ebcfb29549 schema:name doi
53 schema:value 10.1007/3-540-45014-9_34
54 rdf:type schema:PropertyValue
55 N49d9674d52c24cbfb5c174a3c1684022 schema:name Springer Nature - SN SciGraph project
56 rdf:type schema:Organization
57 N4b6528867db24cc2a1f5a9bd7064aa4d rdf:first sg:person.011324641665.26
58 rdf:rest N140c1abc9b904311a38324263fe6e311
59 N5529fcc957b84b4092a3f3d942906131 schema:name Springer Nature
60 rdf:type schema:Organisation
61 Nd469f7fa8f4e44679c3f382a4c1b1d14 schema:name dimensions_id
62 schema:value pub.1032419393
63 rdf:type schema:PropertyValue
64 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
65 schema:name Information and Computing Sciences
66 rdf:type schema:DefinedTerm
67 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
68 schema:name Artificial Intelligence and Image Processing
69 rdf:type schema:DefinedTerm
70 sg:person.01020634131.30 schema:affiliation grid-institutes:grid.6292.f
71 schema:familyName Maltoni
72 schema:givenName Davide
73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01020634131.30
74 rdf:type schema:Person
75 sg:person.011324641665.26 schema:affiliation grid-institutes:grid.6292.f
76 schema:familyName Cappelli
77 schema:givenName Raffaele
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011324641665.26
79 rdf:type schema:Person
80 sg:person.013075040365.65 schema:affiliation grid-institutes:grid.6292.f
81 schema:familyName Maio
82 schema:givenName Dario
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013075040365.65
84 rdf:type schema:Person
85 grid-institutes:grid.6292.f schema:alternateName DEIS, CSITE - CNR, Università di Bologna, viale Risorgimento 2, 40136, Bologna, Italy
86 schema:name DEIS, CSITE - CNR, Università di Bologna, viale Risorgimento 2, 40136, Bologna, Italy
87 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...