Semiclassical Description of Shell Effects in Finite Fermion Systems View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2001-07-18

AUTHORS

Matthias Brack

ABSTRACT

Since its first appearance in 1971, Gutzwiller’s trace formula has been extended to systems with continuous symmetries, in which not all periodic orbits are isolated. In order to avoid the divergences occurring in connection with symmetry breaking and orbit bifurcations (characteristic of systems with mixed classical dynamics), special uniform approximations have been developed. We first summarize some of the recent developments in this direction. Then we present applications of the extended trace formulae to describe prominent gross-shell effects of various finite fermion systems (atomic nuclei, metal clusters, and a mesoscopic device) in terms of the leading periodic orbits of their suitably modeled classical mean-field Hamiltonians. More... »

PAGES

459-471

Book

TITLE

Advances in Solid State Physics

ISBN

978-3-540-42000-2
978-3-540-44946-1

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/3-540-44946-9_37

DOI

http://dx.doi.org/10.1007/3-540-44946-9_37

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1039638806


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0204", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Condensed Matter Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Quantum Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute for Theoretical Physics, University of Regensburg, D-93040, Regensburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.7727.5", 
          "name": [
            "Institute for Theoretical Physics, University of Regensburg, D-93040, Regensburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brack", 
        "givenName": "Matthias", 
        "id": "sg:person.012734147145.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012734147145.29"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2001-07-18", 
    "datePublishedReg": "2001-07-18", 
    "description": "Since its first appearance in 1971, Gutzwiller\u2019s trace formula has been extended to systems with continuous symmetries, in which not all periodic orbits are isolated. In order to avoid the divergences occurring in connection with symmetry breaking and orbit bifurcations (characteristic of systems with mixed classical dynamics), special uniform approximations have been developed. We first summarize some of the recent developments in this direction. Then we present applications of the extended trace formulae to describe prominent gross-shell effects of various finite fermion systems (atomic nuclei, metal clusters, and a mesoscopic device) in terms of the leading periodic orbits of their suitably modeled classical mean-field Hamiltonians.", 
    "editor": [
      {
        "familyName": "Kramer", 
        "givenName": "Bernhard", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/3-540-44946-9_37", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-540-42000-2", 
        "978-3-540-44946-1"
      ], 
      "name": "Advances in Solid State Physics", 
      "type": "Book"
    }, 
    "keywords": [
      "finite fermion systems", 
      "trace formula", 
      "periodic orbits", 
      "fermion systems", 
      "mean-field Hamiltonian", 
      "Gutzwiller trace formula", 
      "continuous symmetry", 
      "semiclassical description", 
      "uniform approximation", 
      "orbit bifurcations", 
      "symmetry breaking", 
      "shell effects", 
      "orbit", 
      "formula", 
      "Hamiltonian", 
      "approximation", 
      "bifurcation", 
      "symmetry", 
      "breaking", 
      "system", 
      "recent developments", 
      "description", 
      "terms", 
      "applications", 
      "direction", 
      "connection", 
      "divergence", 
      "order", 
      "effect", 
      "appearance", 
      "first appearance", 
      "development"
    ], 
    "name": "Semiclassical Description of Shell Effects in Finite Fermion Systems", 
    "pagination": "459-471", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1039638806"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/3-540-44946-9_37"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/3-540-44946-9_37", 
      "https://app.dimensions.ai/details/publication/pub.1039638806"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-09-02T16:10", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/chapter/chapter_12.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/3-540-44946-9_37"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-540-44946-9_37'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-540-44946-9_37'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-540-44946-9_37'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-540-44946-9_37'


 

This table displays all metadata directly associated to this object as RDF triples.

95 TRIPLES      22 PREDICATES      57 URIs      49 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/3-540-44946-9_37 schema:about anzsrc-for:02
2 anzsrc-for:0204
3 anzsrc-for:0206
4 schema:author N067e5ddfa5c54202bf593efe9bdeabdc
5 schema:datePublished 2001-07-18
6 schema:datePublishedReg 2001-07-18
7 schema:description Since its first appearance in 1971, Gutzwiller’s trace formula has been extended to systems with continuous symmetries, in which not all periodic orbits are isolated. In order to avoid the divergences occurring in connection with symmetry breaking and orbit bifurcations (characteristic of systems with mixed classical dynamics), special uniform approximations have been developed. We first summarize some of the recent developments in this direction. Then we present applications of the extended trace formulae to describe prominent gross-shell effects of various finite fermion systems (atomic nuclei, metal clusters, and a mesoscopic device) in terms of the leading periodic orbits of their suitably modeled classical mean-field Hamiltonians.
8 schema:editor N5a2fd728a6294ca8baa4127f32d6676c
9 schema:genre chapter
10 schema:isAccessibleForFree true
11 schema:isPartOf N07f47401f092440cba824ebe63fda1c0
12 schema:keywords Gutzwiller trace formula
13 Hamiltonian
14 appearance
15 applications
16 approximation
17 bifurcation
18 breaking
19 connection
20 continuous symmetry
21 description
22 development
23 direction
24 divergence
25 effect
26 fermion systems
27 finite fermion systems
28 first appearance
29 formula
30 mean-field Hamiltonian
31 orbit
32 orbit bifurcations
33 order
34 periodic orbits
35 recent developments
36 semiclassical description
37 shell effects
38 symmetry
39 symmetry breaking
40 system
41 terms
42 trace formula
43 uniform approximation
44 schema:name Semiclassical Description of Shell Effects in Finite Fermion Systems
45 schema:pagination 459-471
46 schema:productId N3fc0fb3a437342ad887252860a7a7aa9
47 Nd178ae2e1a964d89a12a6093ee12dc67
48 schema:publisher N91d0656919e0466ca1533b45636d5c37
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039638806
50 https://doi.org/10.1007/3-540-44946-9_37
51 schema:sdDatePublished 2022-09-02T16:10
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher N9380fc223ff54438ad74e482da7d5561
54 schema:url https://doi.org/10.1007/3-540-44946-9_37
55 sgo:license sg:explorer/license/
56 sgo:sdDataset chapters
57 rdf:type schema:Chapter
58 N067e5ddfa5c54202bf593efe9bdeabdc rdf:first sg:person.012734147145.29
59 rdf:rest rdf:nil
60 N07f47401f092440cba824ebe63fda1c0 schema:isbn 978-3-540-42000-2
61 978-3-540-44946-1
62 schema:name Advances in Solid State Physics
63 rdf:type schema:Book
64 N3fc0fb3a437342ad887252860a7a7aa9 schema:name dimensions_id
65 schema:value pub.1039638806
66 rdf:type schema:PropertyValue
67 N5a2fd728a6294ca8baa4127f32d6676c rdf:first Ne37bd8a6dc6d4ddd8c1ca44306d3acc7
68 rdf:rest rdf:nil
69 N91d0656919e0466ca1533b45636d5c37 schema:name Springer Nature
70 rdf:type schema:Organisation
71 N9380fc223ff54438ad74e482da7d5561 schema:name Springer Nature - SN SciGraph project
72 rdf:type schema:Organization
73 Nd178ae2e1a964d89a12a6093ee12dc67 schema:name doi
74 schema:value 10.1007/3-540-44946-9_37
75 rdf:type schema:PropertyValue
76 Ne37bd8a6dc6d4ddd8c1ca44306d3acc7 schema:familyName Kramer
77 schema:givenName Bernhard
78 rdf:type schema:Person
79 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
80 schema:name Physical Sciences
81 rdf:type schema:DefinedTerm
82 anzsrc-for:0204 schema:inDefinedTermSet anzsrc-for:
83 schema:name Condensed Matter Physics
84 rdf:type schema:DefinedTerm
85 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
86 schema:name Quantum Physics
87 rdf:type schema:DefinedTerm
88 sg:person.012734147145.29 schema:affiliation grid-institutes:grid.7727.5
89 schema:familyName Brack
90 schema:givenName Matthias
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012734147145.29
92 rdf:type schema:Person
93 grid-institutes:grid.7727.5 schema:alternateName Institute for Theoretical Physics, University of Regensburg, D-93040, Regensburg, Germany
94 schema:name Institute for Theoretical Physics, University of Regensburg, D-93040, Regensburg, Germany
95 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...