A comparison of the performance of SVM and ARNI on Text Categorization with new filtering measures on an unbalanced collection View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2003-06-18

AUTHORS

Elías F. Combarro , Elena Montañés , José Ranilla , Javier Fernández

ABSTRACT

Text Categorization (TC) is the process of assigning documents to a set of previously fixed categories. A lot of research is going on with the goal of automating this time-consuming task due to the great amount of information available. Machine Learning (ML) algorithms are methods recently applied with this purpose. In this paper, we compare the performance of two of these algorithms (SVM and ARNI) on a collection with an unbalanced distribution of documents into categories. Feature reduction is previously applied with both classical measures (information gain and term frequency) and 3 new measures that we propose here for first time. We also compare their performance. More... »

PAGES

742-749

References to SciGraph publications

Book

TITLE

Artificial Neural Nets Problem Solving Methods

ISBN

978-3-540-40211-4
978-3-540-44869-3

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/3-540-44869-1_94

DOI

http://dx.doi.org/10.1007/3-540-44869-1_94

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1026387934


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Oviedo", 
          "id": "https://www.grid.ac/institutes/grid.10863.3c", 
          "name": [
            "Computer Science Department, University of Oviedo, Campus de Viesques, Gij\u00f3n(Asturias), Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Combarro", 
        "givenName": "El\u00edas F.", 
        "id": "sg:person.014120426453.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014120426453.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Oviedo", 
          "id": "https://www.grid.ac/institutes/grid.10863.3c", 
          "name": [
            "Artificial Intelligence Center, University of Oviedo, Campus de Viesques, Gij\u00f3n(Asturias), Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Monta\u00f1\u00e9s", 
        "givenName": "Elena", 
        "id": "sg:person.011600442422.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011600442422.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Oviedo", 
          "id": "https://www.grid.ac/institutes/grid.10863.3c", 
          "name": [
            "Artificial Intelligence Center, University of Oviedo, Campus de Viesques, Gij\u00f3n(Asturias), Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ranilla", 
        "givenName": "Jos\u00e9", 
        "id": "sg:person.011017130042.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011017130042.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Oviedo", 
          "id": "https://www.grid.ac/institutes/grid.10863.3c", 
          "name": [
            "Artificial Intelligence Center, University of Oviedo, Campus de Viesques, Gij\u00f3n(Asturias), Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fern\u00e1ndez", 
        "givenName": "Javier", 
        "id": "sg:person.011220142546.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011220142546.36"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf03037227", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005084660", 
          "https://doi.org/10.1007/bf03037227"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03037227", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005084660", 
          "https://doi.org/10.1007/bf03037227"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-1-55860-377-6.50023-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013049849"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00116835", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013474790", 
          "https://doi.org/10.1007/bf00116835"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00116835", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013474790", 
          "https://doi.org/10.1007/bf00116835"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/183422.183423", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021178021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00058656", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023012392", 
          "https://doi.org/10.1007/bf00058656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00058656", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023012392", 
          "https://doi.org/10.1007/bf00058656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/505282.505283", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023316280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-2440-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027312764", 
          "https://doi.org/10.1007/978-1-4757-2440-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-2440-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027312764", 
          "https://doi.org/10.1007/978-1-4757-2440-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1108/eb046814", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037275209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0026683", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051853845", 
          "https://doi.org/10.1007/bfb0026683"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2003-06-18", 
    "datePublishedReg": "2003-06-18", 
    "description": "Text Categorization (TC) is the process of assigning documents to a set of previously fixed categories. A lot of research is going on with the goal of automating this time-consuming task due to the great amount of information available. Machine Learning (ML) algorithms are methods recently applied with this purpose. In this paper, we compare the performance of two of these algorithms (SVM and ARNI) on a collection with an unbalanced distribution of documents into categories. Feature reduction is previously applied with both classical measures (information gain and term frequency) and 3 new measures that we propose here for first time. We also compare their performance.", 
    "editor": [
      {
        "familyName": "Mira", 
        "givenName": "Jos\u00e9", 
        "type": "Person"
      }, 
      {
        "familyName": "\u00c1lvarez", 
        "givenName": "Jos\u00e9 R.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/3-540-44869-1_94", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-40211-4", 
        "978-3-540-44869-3"
      ], 
      "name": "Artificial Neural Nets Problem Solving Methods", 
      "type": "Book"
    }, 
    "name": "A comparison of the performance of SVM and ARNI on Text Categorization with new filtering measures on an unbalanced collection", 
    "pagination": "742-749", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/3-540-44869-1_94"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7db604af676709c4d86a3abd82882fc4620af2d837cd5edb6dd7b1fd0e6a5d57"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1026387934"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/3-540-44869-1_94", 
      "https://app.dimensions.ai/details/publication/pub.1026387934"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T05:45", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89804_00000001.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F3-540-44869-1_94"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-540-44869-1_94'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-540-44869-1_94'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-540-44869-1_94'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-540-44869-1_94'


 

This table displays all metadata directly associated to this object as RDF triples.

124 TRIPLES      23 PREDICATES      35 URIs      19 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/3-540-44869-1_94 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Neb035fa159b041309624c22392661ec9
4 schema:citation sg:pub.10.1007/978-1-4757-2440-0
5 sg:pub.10.1007/bf00058656
6 sg:pub.10.1007/bf00116835
7 sg:pub.10.1007/bf03037227
8 sg:pub.10.1007/bfb0026683
9 https://doi.org/10.1016/b978-1-55860-377-6.50023-2
10 https://doi.org/10.1108/eb046814
11 https://doi.org/10.1145/183422.183423
12 https://doi.org/10.1145/505282.505283
13 schema:datePublished 2003-06-18
14 schema:datePublishedReg 2003-06-18
15 schema:description Text Categorization (TC) is the process of assigning documents to a set of previously fixed categories. A lot of research is going on with the goal of automating this time-consuming task due to the great amount of information available. Machine Learning (ML) algorithms are methods recently applied with this purpose. In this paper, we compare the performance of two of these algorithms (SVM and ARNI) on a collection with an unbalanced distribution of documents into categories. Feature reduction is previously applied with both classical measures (information gain and term frequency) and 3 new measures that we propose here for first time. We also compare their performance.
16 schema:editor N7e88b284241943718fbb853e19b21d37
17 schema:genre chapter
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf Nae5a24c096854f729e093f448e818a3d
21 schema:name A comparison of the performance of SVM and ARNI on Text Categorization with new filtering measures on an unbalanced collection
22 schema:pagination 742-749
23 schema:productId N06a9aaf2919f4454b1e587710c18f6fb
24 N1059d4c5f96b4f8585b43be220d1efce
25 N46ca89c904ff45ecbdd32e080d3159e0
26 schema:publisher N6b6b78f2154449f6bd092f2b4bc4b049
27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026387934
28 https://doi.org/10.1007/3-540-44869-1_94
29 schema:sdDatePublished 2019-04-16T05:45
30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
31 schema:sdPublisher N90a376c2f5b34a00b07fc74a4c39e2f0
32 schema:url https://link.springer.com/10.1007%2F3-540-44869-1_94
33 sgo:license sg:explorer/license/
34 sgo:sdDataset chapters
35 rdf:type schema:Chapter
36 N06a9aaf2919f4454b1e587710c18f6fb schema:name readcube_id
37 schema:value 7db604af676709c4d86a3abd82882fc4620af2d837cd5edb6dd7b1fd0e6a5d57
38 rdf:type schema:PropertyValue
39 N0ebce2fd8ec4416eb0e986d878ac86d5 rdf:first Nbf3e14ae769344239f75a75e0c55087c
40 rdf:rest rdf:nil
41 N1059d4c5f96b4f8585b43be220d1efce schema:name doi
42 schema:value 10.1007/3-540-44869-1_94
43 rdf:type schema:PropertyValue
44 N26ecaa240b594c0e9efd8b8eccc35366 rdf:first sg:person.011017130042.09
45 rdf:rest N52f9d15a414242e8a882be052957704b
46 N45e4ecc8435540799c702f7cd630367d rdf:first sg:person.011600442422.98
47 rdf:rest N26ecaa240b594c0e9efd8b8eccc35366
48 N46ca89c904ff45ecbdd32e080d3159e0 schema:name dimensions_id
49 schema:value pub.1026387934
50 rdf:type schema:PropertyValue
51 N52f9d15a414242e8a882be052957704b rdf:first sg:person.011220142546.36
52 rdf:rest rdf:nil
53 N6b6b78f2154449f6bd092f2b4bc4b049 schema:location Berlin, Heidelberg
54 schema:name Springer Berlin Heidelberg
55 rdf:type schema:Organisation
56 N7e88b284241943718fbb853e19b21d37 rdf:first Naad35e8a88dd458ba86794b73721b505
57 rdf:rest N0ebce2fd8ec4416eb0e986d878ac86d5
58 N90a376c2f5b34a00b07fc74a4c39e2f0 schema:name Springer Nature - SN SciGraph project
59 rdf:type schema:Organization
60 Naad35e8a88dd458ba86794b73721b505 schema:familyName Mira
61 schema:givenName José
62 rdf:type schema:Person
63 Nae5a24c096854f729e093f448e818a3d schema:isbn 978-3-540-40211-4
64 978-3-540-44869-3
65 schema:name Artificial Neural Nets Problem Solving Methods
66 rdf:type schema:Book
67 Nbf3e14ae769344239f75a75e0c55087c schema:familyName Álvarez
68 schema:givenName José R.
69 rdf:type schema:Person
70 Neb035fa159b041309624c22392661ec9 rdf:first sg:person.014120426453.50
71 rdf:rest N45e4ecc8435540799c702f7cd630367d
72 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
73 schema:name Information and Computing Sciences
74 rdf:type schema:DefinedTerm
75 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
76 schema:name Artificial Intelligence and Image Processing
77 rdf:type schema:DefinedTerm
78 sg:person.011017130042.09 schema:affiliation https://www.grid.ac/institutes/grid.10863.3c
79 schema:familyName Ranilla
80 schema:givenName José
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011017130042.09
82 rdf:type schema:Person
83 sg:person.011220142546.36 schema:affiliation https://www.grid.ac/institutes/grid.10863.3c
84 schema:familyName Fernández
85 schema:givenName Javier
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011220142546.36
87 rdf:type schema:Person
88 sg:person.011600442422.98 schema:affiliation https://www.grid.ac/institutes/grid.10863.3c
89 schema:familyName Montañés
90 schema:givenName Elena
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011600442422.98
92 rdf:type schema:Person
93 sg:person.014120426453.50 schema:affiliation https://www.grid.ac/institutes/grid.10863.3c
94 schema:familyName Combarro
95 schema:givenName Elías F.
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014120426453.50
97 rdf:type schema:Person
98 sg:pub.10.1007/978-1-4757-2440-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027312764
99 https://doi.org/10.1007/978-1-4757-2440-0
100 rdf:type schema:CreativeWork
101 sg:pub.10.1007/bf00058656 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023012392
102 https://doi.org/10.1007/bf00058656
103 rdf:type schema:CreativeWork
104 sg:pub.10.1007/bf00116835 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013474790
105 https://doi.org/10.1007/bf00116835
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/bf03037227 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005084660
108 https://doi.org/10.1007/bf03037227
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/bfb0026683 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051853845
111 https://doi.org/10.1007/bfb0026683
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/b978-1-55860-377-6.50023-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013049849
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1108/eb046814 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037275209
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1145/183422.183423 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021178021
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1145/505282.505283 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023316280
120 rdf:type schema:CreativeWork
121 https://www.grid.ac/institutes/grid.10863.3c schema:alternateName University of Oviedo
122 schema:name Artificial Intelligence Center, University of Oviedo, Campus de Viesques, Gijón(Asturias), Spain
123 Computer Science Department, University of Oviedo, Campus de Viesques, Gijón(Asturias), Spain
124 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...