Ontology type: schema:Chapter
2003-06-18
AUTHORSElías F. Combarro , Elena Montañés , José Ranilla , Javier Fernández
ABSTRACTText Categorization (TC) is the process of assigning documents to a set of previously fixed categories. A lot of research is going on with the goal of automating this time-consuming task due to the great amount of information available. Machine Learning (ML) algorithms are methods recently applied with this purpose. In this paper, we compare the performance of two of these algorithms (SVM and ARNI) on a collection with an unbalanced distribution of documents into categories. Feature reduction is previously applied with both classical measures (information gain and term frequency) and 3 new measures that we propose here for first time. We also compare their performance. More... »
PAGES742-749
Artificial Neural Nets Problem Solving Methods
ISBN
978-3-540-40211-4
978-3-540-44869-3
http://scigraph.springernature.com/pub.10.1007/3-540-44869-1_94
DOIhttp://dx.doi.org/10.1007/3-540-44869-1_94
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1026387934
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Artificial Intelligence and Image Processing",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "University of Oviedo",
"id": "https://www.grid.ac/institutes/grid.10863.3c",
"name": [
"Computer Science Department, University of Oviedo, Campus de Viesques, Gij\u00f3n(Asturias), Spain"
],
"type": "Organization"
},
"familyName": "Combarro",
"givenName": "El\u00edas F.",
"id": "sg:person.014120426453.50",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014120426453.50"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Oviedo",
"id": "https://www.grid.ac/institutes/grid.10863.3c",
"name": [
"Artificial Intelligence Center, University of Oviedo, Campus de Viesques, Gij\u00f3n(Asturias), Spain"
],
"type": "Organization"
},
"familyName": "Monta\u00f1\u00e9s",
"givenName": "Elena",
"id": "sg:person.011600442422.98",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011600442422.98"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Oviedo",
"id": "https://www.grid.ac/institutes/grid.10863.3c",
"name": [
"Artificial Intelligence Center, University of Oviedo, Campus de Viesques, Gij\u00f3n(Asturias), Spain"
],
"type": "Organization"
},
"familyName": "Ranilla",
"givenName": "Jos\u00e9",
"id": "sg:person.011017130042.09",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011017130042.09"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Oviedo",
"id": "https://www.grid.ac/institutes/grid.10863.3c",
"name": [
"Artificial Intelligence Center, University of Oviedo, Campus de Viesques, Gij\u00f3n(Asturias), Spain"
],
"type": "Organization"
},
"familyName": "Fern\u00e1ndez",
"givenName": "Javier",
"id": "sg:person.011220142546.36",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011220142546.36"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf03037227",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005084660",
"https://doi.org/10.1007/bf03037227"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf03037227",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005084660",
"https://doi.org/10.1007/bf03037227"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/b978-1-55860-377-6.50023-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1013049849"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00116835",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1013474790",
"https://doi.org/10.1007/bf00116835"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00116835",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1013474790",
"https://doi.org/10.1007/bf00116835"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1145/183422.183423",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1021178021"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00058656",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1023012392",
"https://doi.org/10.1007/bf00058656"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00058656",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1023012392",
"https://doi.org/10.1007/bf00058656"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1145/505282.505283",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1023316280"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4757-2440-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1027312764",
"https://doi.org/10.1007/978-1-4757-2440-0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4757-2440-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1027312764",
"https://doi.org/10.1007/978-1-4757-2440-0"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1108/eb046814",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037275209"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bfb0026683",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1051853845",
"https://doi.org/10.1007/bfb0026683"
],
"type": "CreativeWork"
}
],
"datePublished": "2003-06-18",
"datePublishedReg": "2003-06-18",
"description": "Text Categorization (TC) is the process of assigning documents to a set of previously fixed categories. A lot of research is going on with the goal of automating this time-consuming task due to the great amount of information available. Machine Learning (ML) algorithms are methods recently applied with this purpose. In this paper, we compare the performance of two of these algorithms (SVM and ARNI) on a collection with an unbalanced distribution of documents into categories. Feature reduction is previously applied with both classical measures (information gain and term frequency) and 3 new measures that we propose here for first time. We also compare their performance.",
"editor": [
{
"familyName": "Mira",
"givenName": "Jos\u00e9",
"type": "Person"
},
{
"familyName": "\u00c1lvarez",
"givenName": "Jos\u00e9 R.",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/3-540-44869-1_94",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-540-40211-4",
"978-3-540-44869-3"
],
"name": "Artificial Neural Nets Problem Solving Methods",
"type": "Book"
},
"name": "A comparison of the performance of SVM and ARNI on Text Categorization with new filtering measures on an unbalanced collection",
"pagination": "742-749",
"productId": [
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/3-540-44869-1_94"
]
},
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"7db604af676709c4d86a3abd82882fc4620af2d837cd5edb6dd7b1fd0e6a5d57"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1026387934"
]
}
],
"publisher": {
"location": "Berlin, Heidelberg",
"name": "Springer Berlin Heidelberg",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/3-540-44869-1_94",
"https://app.dimensions.ai/details/publication/pub.1026387934"
],
"sdDataset": "chapters",
"sdDatePublished": "2019-04-16T05:45",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89804_00000001.jsonl",
"type": "Chapter",
"url": "https://link.springer.com/10.1007%2F3-540-44869-1_94"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-540-44869-1_94'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-540-44869-1_94'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-540-44869-1_94'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-540-44869-1_94'
This table displays all metadata directly associated to this object as RDF triples.
124 TRIPLES
23 PREDICATES
35 URIs
19 LITERALS
8 BLANK NODES