2003-06-18
AUTHORSJosé Ramón Quevedo , Elías F. Combarro , Antonio Bahamonde
ABSTRACTIt is a widely accepted fact that no single Machine Learning System (MLS) gets the smaller classification error on all data sets. Different algorithms fit better to certain problems and it is interesting to combine them in some way to improve the overall accuracy. In this paper, we propose a method to construct a new MLS from given ones. It is based on the selection of the system that will perform better on a particular data set. We study several ways of selecting the systems and carry out experiments with well-known MLS on the Holte data set. More... »
PAGES246-253
Computational Methods in Neural Modeling
ISBN
978-3-540-40210-7
978-3-540-44868-6
http://scigraph.springernature.com/pub.10.1007/3-540-44868-3_32
DOIhttp://dx.doi.org/10.1007/3-540-44868-3_32
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1007647528
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Artificial Intelligence and Image Processing",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "University of Oviedo",
"id": "https://www.grid.ac/institutes/grid.10863.3c",
"name": [
"Centro de Inteligencia Artificial, Universidad de Oviedo at Gij\u00f3n, Campus de Viesques, E-33271, Gij\u00f3n, Spain"
],
"type": "Organization"
},
"familyName": "Quevedo",
"givenName": "Jos\u00e9 Ram\u00f3n",
"id": "sg:person.01070600721.84",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070600721.84"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Oviedo",
"id": "https://www.grid.ac/institutes/grid.10863.3c",
"name": [
"Centro de Inteligencia Artificial, Universidad de Oviedo at Gij\u00f3n, Campus de Viesques, E-33271, Gij\u00f3n, Spain"
],
"type": "Organization"
},
"familyName": "Combarro",
"givenName": "El\u00edas F.",
"id": "sg:person.014120426453.50",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014120426453.50"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Oviedo",
"id": "https://www.grid.ac/institutes/grid.10863.3c",
"name": [
"Centro de Inteligencia Artificial, Universidad de Oviedo at Gij\u00f3n, Campus de Viesques, E-33271, Gij\u00f3n, Spain"
],
"type": "Organization"
},
"familyName": "Bahamonde",
"givenName": "Antonio",
"id": "sg:person.01321255721.87",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01321255721.87"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1023/a:1022631118932",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006996698",
"https://doi.org/10.1023/a:1022631118932"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/b978-1-55860-377-6.50023-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1013049849"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00058656",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1023012392",
"https://doi.org/10.1007/bf00058656"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00058656",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1023012392",
"https://doi.org/10.1007/bf00058656"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/b978-1-55860-307-3.50037-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1042470338"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00153759",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049631378",
"https://doi.org/10.1007/bf00153759"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00153759",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049631378",
"https://doi.org/10.1007/bf00153759"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1162/089976698300017197",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1053132543"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tai.1994.346412",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1093241761"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1613/jair.346",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1105538442"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4899-2927-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1109705824",
"https://doi.org/10.1007/978-1-4899-2927-3"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4899-2927-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1109705824",
"https://doi.org/10.1007/978-1-4899-2927-3"
],
"type": "CreativeWork"
}
],
"datePublished": "2003-06-18",
"datePublishedReg": "2003-06-18",
"description": "It is a widely accepted fact that no single Machine Learning System (MLS) gets the smaller classification error on all data sets. Different algorithms fit better to certain problems and it is interesting to combine them in some way to improve the overall accuracy. In this paper, we propose a method to construct a new MLS from given ones. It is based on the selection of the system that will perform better on a particular data set. We study several ways of selecting the systems and carry out experiments with well-known MLS on the Holte data set.",
"editor": [
{
"familyName": "Mira",
"givenName": "Jos\u00e9",
"type": "Person"
},
{
"familyName": "\u00c1lvarez",
"givenName": "Jos\u00e9 R.",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/3-540-44868-3_32",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-540-40210-7",
"978-3-540-44868-6"
],
"name": "Computational Methods in Neural Modeling",
"type": "Book"
},
"name": "Choosing among algorithms to improve accuracy",
"pagination": "246-253",
"productId": [
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/3-540-44868-3_32"
]
},
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"246d701111ab179ba845a98ee4e00a72aeee11d5847a8b58dc42854773d7ca9a"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1007647528"
]
}
],
"publisher": {
"location": "Berlin, Heidelberg",
"name": "Springer Berlin Heidelberg",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/3-540-44868-3_32",
"https://app.dimensions.ai/details/publication/pub.1007647528"
],
"sdDataset": "chapters",
"sdDatePublished": "2019-04-16T05:43",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89798_00000000.jsonl",
"type": "Chapter",
"url": "https://link.springer.com/10.1007%2F3-540-44868-3_32"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-540-44868-3_32'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-540-44868-3_32'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-540-44868-3_32'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-540-44868-3_32'
This table displays all metadata directly associated to this object as RDF triples.
115 TRIPLES
23 PREDICATES
35 URIs
19 LITERALS
8 BLANK NODES