Sequence learning using the neural coding View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2003-06-18

AUTHORS

Sorin Moga , Philippe Gaussier , Jean-Paul Banquet

ABSTRACT

This article introduces a neural network capable of learning a temporal sequence. Directly inspired from a hippocampus model [2], this architecture allows an autonomous robot to learn how to imitate a sequence of movements with the correct timing. The results show that the network model is fast, accurate and robust.

PAGES

198-205

Book

TITLE

Computational Methods in Neural Modeling

ISBN

978-3-540-40210-7
978-3-540-44868-6

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/3-540-44868-3_26

DOI

http://dx.doi.org/10.1007/3-540-44868-3_26

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1023539681


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "D\u00e9partment IASC, ENST Bretagne, BP 832, 29285, Brest, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Moga", 
        "givenName": "Sorin", 
        "id": "sg:person.010406070305.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010406070305.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Information Processing and System Research Lab", 
          "id": "https://www.grid.ac/institutes/grid.463844.9", 
          "name": [
            "ETIS, University of Cergy, 6, av. Ponceau, 95014, Cergy, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gaussier", 
        "givenName": "Philippe", 
        "id": "sg:person.01041272554.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041272554.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "IFR Neurosciences, INSERM U483, 47, bv. de l\u2019Hopital, 75651, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Banquet", 
        "givenName": "Jean-Paul", 
        "id": "sg:person.0773157354.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0773157354.72"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1080/088395198117596", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009321480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0893-6080(89)90026-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014193596"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0893-6080(89)90026-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014193596"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0893-6080(05)80161-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030672768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0893-6080(05)80161-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030672768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0893-6080(91)90057-c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051323368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0893-6080(91)90057-c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051323368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/3468.952717", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061157851"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2003-06-18", 
    "datePublishedReg": "2003-06-18", 
    "description": "This article introduces a neural network capable of learning a temporal sequence. Directly inspired from a hippocampus model [2], this architecture allows an autonomous robot to learn how to imitate a sequence of movements with the correct timing. The results show that the network model is fast, accurate and robust.", 
    "editor": [
      {
        "familyName": "Mira", 
        "givenName": "Jos\u00e9", 
        "type": "Person"
      }, 
      {
        "familyName": "\u00c1lvarez", 
        "givenName": "Jos\u00e9 R.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/3-540-44868-3_26", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-40210-7", 
        "978-3-540-44868-6"
      ], 
      "name": "Computational Methods in Neural Modeling", 
      "type": "Book"
    }, 
    "name": "Sequence learning using the neural coding", 
    "pagination": "198-205", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/3-540-44868-3_26"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "70265eb6d7b64b31444657b86d6f9f847a3c0ece798c83c2adabe97027b18c2a"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1023539681"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/3-540-44868-3_26", 
      "https://app.dimensions.ai/details/publication/pub.1023539681"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T05:41", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89786_00000001.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F3-540-44868-3_26"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-540-44868-3_26'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-540-44868-3_26'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-540-44868-3_26'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-540-44868-3_26'


 

This table displays all metadata directly associated to this object as RDF triples.

103 TRIPLES      23 PREDICATES      31 URIs      19 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/3-540-44868-3_26 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nc25e3a7a53704ece8500c9e454107cfb
4 schema:citation https://doi.org/10.1016/0893-6080(89)90026-9
5 https://doi.org/10.1016/0893-6080(91)90057-c
6 https://doi.org/10.1016/s0893-6080(05)80161-3
7 https://doi.org/10.1080/088395198117596
8 https://doi.org/10.1109/3468.952717
9 schema:datePublished 2003-06-18
10 schema:datePublishedReg 2003-06-18
11 schema:description This article introduces a neural network capable of learning a temporal sequence. Directly inspired from a hippocampus model [2], this architecture allows an autonomous robot to learn how to imitate a sequence of movements with the correct timing. The results show that the network model is fast, accurate and robust.
12 schema:editor N6578d117ac1a43bcaf578f838a7341c4
13 schema:genre chapter
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf Nc1098062fa2d4e48a6dff66707e4392f
17 schema:name Sequence learning using the neural coding
18 schema:pagination 198-205
19 schema:productId N0b06563c277d4afa9c2bab1e30f2903a
20 N9d395de6efa840319ef4a41abbb4083d
21 Nda528f116dfa4d7b82ced71d9e5f1feb
22 schema:publisher N24c4791c15184310b918d8b910e95793
23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023539681
24 https://doi.org/10.1007/3-540-44868-3_26
25 schema:sdDatePublished 2019-04-16T05:41
26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
27 schema:sdPublisher N4c998d83f0d240ecb1c65d05bd81e7e0
28 schema:url https://link.springer.com/10.1007%2F3-540-44868-3_26
29 sgo:license sg:explorer/license/
30 sgo:sdDataset chapters
31 rdf:type schema:Chapter
32 N0835f9446fc24f05acfcd503a2dbf8b4 schema:familyName Álvarez
33 schema:givenName José R.
34 rdf:type schema:Person
35 N0b06563c277d4afa9c2bab1e30f2903a schema:name dimensions_id
36 schema:value pub.1023539681
37 rdf:type schema:PropertyValue
38 N24c4791c15184310b918d8b910e95793 schema:location Berlin, Heidelberg
39 schema:name Springer Berlin Heidelberg
40 rdf:type schema:Organisation
41 N4c998d83f0d240ecb1c65d05bd81e7e0 schema:name Springer Nature - SN SciGraph project
42 rdf:type schema:Organization
43 N6578d117ac1a43bcaf578f838a7341c4 rdf:first N689e6894a9944b9cb1f7c24f744f2ac4
44 rdf:rest Nff7b7554102146d3814444cb0452cf4f
45 N689e6894a9944b9cb1f7c24f744f2ac4 schema:familyName Mira
46 schema:givenName José
47 rdf:type schema:Person
48 N6d88acb5a0e84718be093b6115962687 rdf:first sg:person.01041272554.05
49 rdf:rest Nd56683006952495186cdff0c8b0532a4
50 N9d395de6efa840319ef4a41abbb4083d schema:name readcube_id
51 schema:value 70265eb6d7b64b31444657b86d6f9f847a3c0ece798c83c2adabe97027b18c2a
52 rdf:type schema:PropertyValue
53 Nc1098062fa2d4e48a6dff66707e4392f schema:isbn 978-3-540-40210-7
54 978-3-540-44868-6
55 schema:name Computational Methods in Neural Modeling
56 rdf:type schema:Book
57 Nc25e3a7a53704ece8500c9e454107cfb rdf:first sg:person.010406070305.09
58 rdf:rest N6d88acb5a0e84718be093b6115962687
59 Nd3869c5f911a40179f5a1bf038ae8cb0 schema:name IFR Neurosciences, INSERM U483, 47, bv. de l’Hopital, 75651, Paris, France
60 rdf:type schema:Organization
61 Nd56683006952495186cdff0c8b0532a4 rdf:first sg:person.0773157354.72
62 rdf:rest rdf:nil
63 Nd99eb024f82b41f9b7a822dce7dd3451 schema:name Départment IASC, ENST Bretagne, BP 832, 29285, Brest, France
64 rdf:type schema:Organization
65 Nda528f116dfa4d7b82ced71d9e5f1feb schema:name doi
66 schema:value 10.1007/3-540-44868-3_26
67 rdf:type schema:PropertyValue
68 Nff7b7554102146d3814444cb0452cf4f rdf:first N0835f9446fc24f05acfcd503a2dbf8b4
69 rdf:rest rdf:nil
70 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
71 schema:name Information and Computing Sciences
72 rdf:type schema:DefinedTerm
73 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
74 schema:name Artificial Intelligence and Image Processing
75 rdf:type schema:DefinedTerm
76 sg:person.010406070305.09 schema:affiliation Nd99eb024f82b41f9b7a822dce7dd3451
77 schema:familyName Moga
78 schema:givenName Sorin
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010406070305.09
80 rdf:type schema:Person
81 sg:person.01041272554.05 schema:affiliation https://www.grid.ac/institutes/grid.463844.9
82 schema:familyName Gaussier
83 schema:givenName Philippe
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041272554.05
85 rdf:type schema:Person
86 sg:person.0773157354.72 schema:affiliation Nd3869c5f911a40179f5a1bf038ae8cb0
87 schema:familyName Banquet
88 schema:givenName Jean-Paul
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0773157354.72
90 rdf:type schema:Person
91 https://doi.org/10.1016/0893-6080(89)90026-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014193596
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1016/0893-6080(91)90057-c schema:sameAs https://app.dimensions.ai/details/publication/pub.1051323368
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1016/s0893-6080(05)80161-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030672768
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1080/088395198117596 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009321480
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1109/3468.952717 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061157851
100 rdf:type schema:CreativeWork
101 https://www.grid.ac/institutes/grid.463844.9 schema:alternateName Information Processing and System Research Lab
102 schema:name ETIS, University of Cergy, 6, av. Ponceau, 95014, Cergy, France
103 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...