An Efficient Algorithm for Computing Inverses in GF(2m) Using Dual Bases View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2003

AUTHORS

Hyeong Seon Yoo , Seok Ung Yoon , Eui Sun Kim

ABSTRACT

This paper propose a new multiplicative inverse algorithm for Galois field GF(2n) whose elements are represented by optimal normal bases type II. The efficiency of the arithmetic algorithms depends on the basis and many foregoing papers use either polynomial or optimal normal basis. A normal basis element is always possible to rewrite canonical basis form. The proposed algorithm combines normal basis and canonical basis. It is shown that the suggested algorithm is suitable for implementation and reduces the computation time to 5–10 % of the normal basis algorithm. More... »

PAGES

994-999

References to SciGraph publications

  • 1998-04. Montgomery Multiplication in GF(2k) in DESIGNS, CODES AND CRYPTOGRAPHY
  • 2002-02. Itoh-Tsujii Inversion in Standard Basis and Its Application in Cryptography and Codes in DESIGNS, CODES AND CRYPTOGRAPHY
  • Book

    TITLE

    Computational Science — ICCS 2003

    ISBN

    978-3-540-40197-1
    978-3-540-44864-8

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/3-540-44864-0_103

    DOI

    http://dx.doi.org/10.1007/3-540-44864-0_103

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1042374423


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Numerical and Computational Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Inha University", 
              "id": "https://www.grid.ac/institutes/grid.202119.9", 
              "name": [
                "Department of Computer Science, Inha University, Incheon, 402-751, Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yoo", 
            "givenName": "Hyeong Seon", 
            "id": "sg:person.010724721532.32", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010724721532.32"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Inha University", 
              "id": "https://www.grid.ac/institutes/grid.202119.9", 
              "name": [
                "Department of Computer Science, Inha University, Incheon, 402-751, Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yoon", 
            "givenName": "Seok Ung", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Inha University", 
              "id": "https://www.grid.ac/institutes/grid.202119.9", 
              "name": [
                "Department of Computer Science, Inha University, Incheon, 402-751, Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kim", 
            "givenName": "Eui Sun", 
            "id": "sg:person.012210665661.13", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012210665661.13"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1023/a:1008208521515", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002824065", 
              "https://doi.org/10.1023/a:1008208521515"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1013860532636", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011834051", 
              "https://doi.org/10.1023/a:1013860532636"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0166-218x(88)90090-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025417667"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/12.257715", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061087795"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2003", 
        "datePublishedReg": "2003-01-01", 
        "description": "This paper propose a new multiplicative inverse algorithm for Galois field GF(2n) whose elements are represented by optimal normal bases type II. The efficiency of the arithmetic algorithms depends on the basis and many foregoing papers use either polynomial or optimal normal basis. A normal basis element is always possible to rewrite canonical basis form. The proposed algorithm combines normal basis and canonical basis. It is shown that the suggested algorithm is suitable for implementation and reduces the computation time to 5\u201310 % of the normal basis algorithm.", 
        "editor": [
          {
            "familyName": "Sloot", 
            "givenName": "Peter M. A.", 
            "type": "Person"
          }, 
          {
            "familyName": "Abramson", 
            "givenName": "David", 
            "type": "Person"
          }, 
          {
            "familyName": "Bogdanov", 
            "givenName": "Alexander V.", 
            "type": "Person"
          }, 
          {
            "familyName": "Gorbachev", 
            "givenName": "Yuriy E.", 
            "type": "Person"
          }, 
          {
            "familyName": "Dongarra", 
            "givenName": "Jack J.", 
            "type": "Person"
          }, 
          {
            "familyName": "Zomaya", 
            "givenName": "Albert Y.", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/3-540-44864-0_103", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": {
          "isbn": [
            "978-3-540-40197-1", 
            "978-3-540-44864-8"
          ], 
          "name": "Computational Science \u2014 ICCS 2003", 
          "type": "Book"
        }, 
        "name": "An Efficient Algorithm for Computing Inverses in GF(2m) Using Dual Bases", 
        "pagination": "994-999", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/3-540-44864-0_103"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "c9d9330bf21cf5f5ff05e58a1a02ee918e1f6c62f906cd28897d94bddb5008b7"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1042374423"
            ]
          }
        ], 
        "publisher": {
          "location": "Berlin, Heidelberg", 
          "name": "Springer Berlin Heidelberg", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/3-540-44864-0_103", 
          "https://app.dimensions.ai/details/publication/pub.1042374423"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-15T13:30", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000269.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/3-540-44864-0_103"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-540-44864-0_103'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-540-44864-0_103'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-540-44864-0_103'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-540-44864-0_103'


     

    This table displays all metadata directly associated to this object as RDF triples.

    117 TRIPLES      23 PREDICATES      31 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/3-540-44864-0_103 schema:about anzsrc-for:01
    2 anzsrc-for:0103
    3 schema:author N9b095c61aafb4c34825e87392c8689f0
    4 schema:citation sg:pub.10.1023/a:1008208521515
    5 sg:pub.10.1023/a:1013860532636
    6 https://doi.org/10.1016/0166-218x(88)90090-x
    7 https://doi.org/10.1109/12.257715
    8 schema:datePublished 2003
    9 schema:datePublishedReg 2003-01-01
    10 schema:description This paper propose a new multiplicative inverse algorithm for Galois field GF(2n) whose elements are represented by optimal normal bases type II. The efficiency of the arithmetic algorithms depends on the basis and many foregoing papers use either polynomial or optimal normal basis. A normal basis element is always possible to rewrite canonical basis form. The proposed algorithm combines normal basis and canonical basis. It is shown that the suggested algorithm is suitable for implementation and reduces the computation time to 5–10 % of the normal basis algorithm.
    11 schema:editor N0c586d68499443e996b0a3ebc63b8def
    12 schema:genre chapter
    13 schema:inLanguage en
    14 schema:isAccessibleForFree true
    15 schema:isPartOf N6aff6ef4d9484a6da518466d45a5bbb0
    16 schema:name An Efficient Algorithm for Computing Inverses in GF(2m) Using Dual Bases
    17 schema:pagination 994-999
    18 schema:productId N1e17a65091b6477389e60811a9eda6e4
    19 N252ee2d514624988b017b8f62402f694
    20 N988b0d4314a94aa0a631fa7be89c2ac7
    21 schema:publisher N0307b7b6c70a459081b809b393a61ab6
    22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042374423
    23 https://doi.org/10.1007/3-540-44864-0_103
    24 schema:sdDatePublished 2019-04-15T13:30
    25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    26 schema:sdPublisher N407010df8a114d65a63f633a949f7beb
    27 schema:url http://link.springer.com/10.1007/3-540-44864-0_103
    28 sgo:license sg:explorer/license/
    29 sgo:sdDataset chapters
    30 rdf:type schema:Chapter
    31 N0307b7b6c70a459081b809b393a61ab6 schema:location Berlin, Heidelberg
    32 schema:name Springer Berlin Heidelberg
    33 rdf:type schema:Organisation
    34 N0c586d68499443e996b0a3ebc63b8def rdf:first N111bb4d9dea94618b0d0ee54044fda2b
    35 rdf:rest N326a19825a084610b1fc78ff51a2d5d1
    36 N111bb4d9dea94618b0d0ee54044fda2b schema:familyName Sloot
    37 schema:givenName Peter M. A.
    38 rdf:type schema:Person
    39 N114c5ee19710479cb73f9c74a895cbca schema:familyName Gorbachev
    40 schema:givenName Yuriy E.
    41 rdf:type schema:Person
    42 N11f5d59edb2249dc9a2d9f78cced2d13 rdf:first Nbb3a00cbd186480ab6278cccc680c10e
    43 rdf:rest rdf:nil
    44 N1e17a65091b6477389e60811a9eda6e4 schema:name doi
    45 schema:value 10.1007/3-540-44864-0_103
    46 rdf:type schema:PropertyValue
    47 N252ee2d514624988b017b8f62402f694 schema:name dimensions_id
    48 schema:value pub.1042374423
    49 rdf:type schema:PropertyValue
    50 N3262c6be92e040bfa44706d1006df9ca rdf:first N114c5ee19710479cb73f9c74a895cbca
    51 rdf:rest N9f2c7b7c870945ecb0a984dd11c880cd
    52 N326a19825a084610b1fc78ff51a2d5d1 rdf:first Nc95633a4fc2449a1a390cefa02cbcba8
    53 rdf:rest N9e54b81bff2745c78dfbd97f3da1ab62
    54 N407010df8a114d65a63f633a949f7beb schema:name Springer Nature - SN SciGraph project
    55 rdf:type schema:Organization
    56 N6aff6ef4d9484a6da518466d45a5bbb0 schema:isbn 978-3-540-40197-1
    57 978-3-540-44864-8
    58 schema:name Computational Science — ICCS 2003
    59 rdf:type schema:Book
    60 N96283623659a432188538b44ae9c7357 rdf:first sg:person.012210665661.13
    61 rdf:rest rdf:nil
    62 N988b0d4314a94aa0a631fa7be89c2ac7 schema:name readcube_id
    63 schema:value c9d9330bf21cf5f5ff05e58a1a02ee918e1f6c62f906cd28897d94bddb5008b7
    64 rdf:type schema:PropertyValue
    65 N9b095c61aafb4c34825e87392c8689f0 rdf:first sg:person.010724721532.32
    66 rdf:rest Nd0434bc7c3524d208950cc70d311de09
    67 N9e54b81bff2745c78dfbd97f3da1ab62 rdf:first Nee8b11404b594fe1856919be3ef2a9fc
    68 rdf:rest N3262c6be92e040bfa44706d1006df9ca
    69 N9f2c7b7c870945ecb0a984dd11c880cd rdf:first Nb79ff7e8749d4da39c2ff44580423ae8
    70 rdf:rest N11f5d59edb2249dc9a2d9f78cced2d13
    71 Nb79ff7e8749d4da39c2ff44580423ae8 schema:familyName Dongarra
    72 schema:givenName Jack J.
    73 rdf:type schema:Person
    74 Nbb3a00cbd186480ab6278cccc680c10e schema:familyName Zomaya
    75 schema:givenName Albert Y.
    76 rdf:type schema:Person
    77 Nc95633a4fc2449a1a390cefa02cbcba8 schema:familyName Abramson
    78 schema:givenName David
    79 rdf:type schema:Person
    80 Nd0434bc7c3524d208950cc70d311de09 rdf:first Nec7614cade72427181b008e41f88e602
    81 rdf:rest N96283623659a432188538b44ae9c7357
    82 Nec7614cade72427181b008e41f88e602 schema:affiliation https://www.grid.ac/institutes/grid.202119.9
    83 schema:familyName Yoon
    84 schema:givenName Seok Ung
    85 rdf:type schema:Person
    86 Nee8b11404b594fe1856919be3ef2a9fc schema:familyName Bogdanov
    87 schema:givenName Alexander V.
    88 rdf:type schema:Person
    89 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    90 schema:name Mathematical Sciences
    91 rdf:type schema:DefinedTerm
    92 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
    93 schema:name Numerical and Computational Mathematics
    94 rdf:type schema:DefinedTerm
    95 sg:person.010724721532.32 schema:affiliation https://www.grid.ac/institutes/grid.202119.9
    96 schema:familyName Yoo
    97 schema:givenName Hyeong Seon
    98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010724721532.32
    99 rdf:type schema:Person
    100 sg:person.012210665661.13 schema:affiliation https://www.grid.ac/institutes/grid.202119.9
    101 schema:familyName Kim
    102 schema:givenName Eui Sun
    103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012210665661.13
    104 rdf:type schema:Person
    105 sg:pub.10.1023/a:1008208521515 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002824065
    106 https://doi.org/10.1023/a:1008208521515
    107 rdf:type schema:CreativeWork
    108 sg:pub.10.1023/a:1013860532636 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011834051
    109 https://doi.org/10.1023/a:1013860532636
    110 rdf:type schema:CreativeWork
    111 https://doi.org/10.1016/0166-218x(88)90090-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1025417667
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.1109/12.257715 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061087795
    114 rdf:type schema:CreativeWork
    115 https://www.grid.ac/institutes/grid.202119.9 schema:alternateName Inha University
    116 schema:name Department of Computer Science, Inha University, Incheon, 402-751, Korea
    117 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...