The Design and Implementation of Chinese Question and Answering System View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2003-06-18

AUTHORS

I.-Heng Meng , Wei-Pang Yang

ABSTRACT

Information retrieval has been proven effective in discovering specific passages within large collections of documents in response to a user query. Users frequently obtain brief answers to specific questions instead of obtaining the whole documents. The QA system can process the question statement in Chinese natural language fashion and find out the implicit intention of the user query. This study proposes a Chinese Question Answering system based on HowNet and Autotag. The experiment collected 900 Chinese News items from www.chinatimes.com and presented an excellent MRR (Mean Reciprocal Rate) value at 0.84. More... »

PAGES

601-613

Book

TITLE

Computational Science and Its Applications — ICCSA 2003

ISBN

978-3-540-40155-1
978-3-540-44839-6

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/3-540-44839-x_64

DOI

http://dx.doi.org/10.1007/3-540-44839-x_64

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1044967105


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Computer and Information Science, National Chiao-Tung University, Hsinchu, Taiwan, R.O.C.", 
          "id": "http://www.grid.ac/institutes/grid.260539.b", 
          "name": [
            "Institute of Computer and Information Science, National Chiao-Tung University, Hsinchu, Taiwan, R.O.C."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Meng", 
        "givenName": "I.-Heng", 
        "id": "sg:person.011526455523.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011526455523.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Computer and Information Science, National Chiao-Tung University, Hsinchu, Taiwan, R.O.C.", 
          "id": "http://www.grid.ac/institutes/grid.260539.b", 
          "name": [
            "Institute of Computer and Information Science, National Chiao-Tung University, Hsinchu, Taiwan, R.O.C."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Wei-Pang", 
        "id": "sg:person.014374171260.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014374171260.51"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2003-06-18", 
    "datePublishedReg": "2003-06-18", 
    "description": "Information retrieval has been proven effective in discovering specific passages within large collections of documents in response to a user query. Users frequently obtain brief answers to specific questions instead of obtaining the whole documents. The QA system can process the question statement in Chinese natural language fashion and find out the implicit intention of the user query. This study proposes a Chinese Question Answering system based on HowNet and Autotag. The experiment collected 900 Chinese News items from www.chinatimes.com and presented an excellent MRR (Mean Reciprocal Rate) value at 0.84.", 
    "editor": [
      {
        "familyName": "Kumar", 
        "givenName": "Vipin", 
        "type": "Person"
      }, 
      {
        "familyName": "Gavrilova", 
        "givenName": "Marina L.", 
        "type": "Person"
      }, 
      {
        "familyName": "Tan", 
        "givenName": "Chih Jeng Kenneth", 
        "type": "Person"
      }, 
      {
        "familyName": "L\u2019Ecuyer", 
        "givenName": "Pierre", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/3-540-44839-x_64", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-40155-1", 
        "978-3-540-44839-6"
      ], 
      "name": "Computational Science and Its Applications \u2014 ICCSA 2003", 
      "type": "Book"
    }, 
    "keywords": [
      "user queries", 
      "Answering System", 
      "Question Answering System", 
      "information retrieval", 
      "Chinese Question Answering System", 
      "whole document", 
      "QA system", 
      "implicit intention", 
      "Chinese question", 
      "large collection", 
      "queries", 
      "question statements", 
      "new items", 
      "documents", 
      "MRR values", 
      "AutoTag", 
      "users", 
      "retrieval", 
      "system", 
      "HowNet", 
      "implementation", 
      "www", 
      "brief answers", 
      "specific passages", 
      "collection", 
      "design", 
      "specific questions", 
      "answers", 
      "items", 
      "experiments", 
      "fashion", 
      "intention", 
      "questions", 
      "statements", 
      "values", 
      "study", 
      "response", 
      "passage"
    ], 
    "name": "The Design and Implementation of Chinese Question and Answering System", 
    "pagination": "601-613", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1044967105"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/3-540-44839-x_64"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/3-540-44839-x_64", 
      "https://app.dimensions.ai/details/publication/pub.1044967105"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-10T10:38", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/chapter/chapter_138.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/3-540-44839-x_64"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-540-44839-x_64'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-540-44839-x_64'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-540-44839-x_64'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-540-44839-x_64'


 

This table displays all metadata directly associated to this object as RDF triples.

120 TRIPLES      23 PREDICATES      63 URIs      56 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/3-540-44839-x_64 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Ndb705b7ea97d46cfa4b7bbb3eefc9183
4 schema:datePublished 2003-06-18
5 schema:datePublishedReg 2003-06-18
6 schema:description Information retrieval has been proven effective in discovering specific passages within large collections of documents in response to a user query. Users frequently obtain brief answers to specific questions instead of obtaining the whole documents. The QA system can process the question statement in Chinese natural language fashion and find out the implicit intention of the user query. This study proposes a Chinese Question Answering system based on HowNet and Autotag. The experiment collected 900 Chinese News items from www.chinatimes.com and presented an excellent MRR (Mean Reciprocal Rate) value at 0.84.
7 schema:editor N9e17df285fe5409d8840e358a7509db8
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Nb731262752f541009a2935bc2f77769c
12 schema:keywords Answering System
13 AutoTag
14 Chinese Question Answering System
15 Chinese question
16 HowNet
17 MRR values
18 QA system
19 Question Answering System
20 answers
21 brief answers
22 collection
23 design
24 documents
25 experiments
26 fashion
27 implementation
28 implicit intention
29 information retrieval
30 intention
31 items
32 large collection
33 new items
34 passage
35 queries
36 question statements
37 questions
38 response
39 retrieval
40 specific passages
41 specific questions
42 statements
43 study
44 system
45 user queries
46 users
47 values
48 whole document
49 www
50 schema:name The Design and Implementation of Chinese Question and Answering System
51 schema:pagination 601-613
52 schema:productId Nd00ba5a258e8479eb45f89fe9ad6e8e0
53 Neb87ef30f1694622adea9580f4a9b26d
54 schema:publisher N4b203c72a1b047b2abc34a7d0c294228
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044967105
56 https://doi.org/10.1007/3-540-44839-x_64
57 schema:sdDatePublished 2022-05-10T10:38
58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
59 schema:sdPublisher N66f89780251a42dda223dc0eafe8082d
60 schema:url https://doi.org/10.1007/3-540-44839-x_64
61 sgo:license sg:explorer/license/
62 sgo:sdDataset chapters
63 rdf:type schema:Chapter
64 N090c06143e7847949ef378f9a4eaa84a schema:familyName Kumar
65 schema:givenName Vipin
66 rdf:type schema:Person
67 N1d8f734e68974a55ad353b906d634f0c rdf:first N61c6721d76f145a381ca44ad0e6bde4c
68 rdf:rest N3b3124c68d884edfae1ca12130a4c63c
69 N28b8e4dffbe54641ba60792fed69cbc7 schema:familyName Gavrilova
70 schema:givenName Marina L.
71 rdf:type schema:Person
72 N3b3124c68d884edfae1ca12130a4c63c rdf:first Nd9081529b67041368c2cbedf37caf4a7
73 rdf:rest rdf:nil
74 N4b203c72a1b047b2abc34a7d0c294228 schema:name Springer Nature
75 rdf:type schema:Organisation
76 N61c6721d76f145a381ca44ad0e6bde4c schema:familyName Tan
77 schema:givenName Chih Jeng Kenneth
78 rdf:type schema:Person
79 N66f89780251a42dda223dc0eafe8082d schema:name Springer Nature - SN SciGraph project
80 rdf:type schema:Organization
81 N8c187bfc07874ed8a9be93f4b89b5f77 rdf:first sg:person.014374171260.51
82 rdf:rest rdf:nil
83 N9e17df285fe5409d8840e358a7509db8 rdf:first N090c06143e7847949ef378f9a4eaa84a
84 rdf:rest Ne9758c05c3c24f23a7f67bb899df7418
85 Nb731262752f541009a2935bc2f77769c schema:isbn 978-3-540-40155-1
86 978-3-540-44839-6
87 schema:name Computational Science and Its Applications — ICCSA 2003
88 rdf:type schema:Book
89 Nd00ba5a258e8479eb45f89fe9ad6e8e0 schema:name doi
90 schema:value 10.1007/3-540-44839-x_64
91 rdf:type schema:PropertyValue
92 Nd9081529b67041368c2cbedf37caf4a7 schema:familyName L’Ecuyer
93 schema:givenName Pierre
94 rdf:type schema:Person
95 Ndb705b7ea97d46cfa4b7bbb3eefc9183 rdf:first sg:person.011526455523.38
96 rdf:rest N8c187bfc07874ed8a9be93f4b89b5f77
97 Ne9758c05c3c24f23a7f67bb899df7418 rdf:first N28b8e4dffbe54641ba60792fed69cbc7
98 rdf:rest N1d8f734e68974a55ad353b906d634f0c
99 Neb87ef30f1694622adea9580f4a9b26d schema:name dimensions_id
100 schema:value pub.1044967105
101 rdf:type schema:PropertyValue
102 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
103 schema:name Information and Computing Sciences
104 rdf:type schema:DefinedTerm
105 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
106 schema:name Artificial Intelligence and Image Processing
107 rdf:type schema:DefinedTerm
108 sg:person.011526455523.38 schema:affiliation grid-institutes:grid.260539.b
109 schema:familyName Meng
110 schema:givenName I.-Heng
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011526455523.38
112 rdf:type schema:Person
113 sg:person.014374171260.51 schema:affiliation grid-institutes:grid.260539.b
114 schema:familyName Yang
115 schema:givenName Wei-Pang
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014374171260.51
117 rdf:type schema:Person
118 grid-institutes:grid.260539.b schema:alternateName Institute of Computer and Information Science, National Chiao-Tung University, Hsinchu, Taiwan, R.O.C.
119 schema:name Institute of Computer and Information Science, National Chiao-Tung University, Hsinchu, Taiwan, R.O.C.
120 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...