Modelling Plastic Distortion in Fingerprint Images View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2001-05-09

AUTHORS

R. Cappelli , D. Maio , D. Maltoni

ABSTRACT

This paper introduces a plastic distortion model to cope with the nonlinear deformations characterizing fingerprint images taken with online acquisition sensors. The problem has a great impact on several practical applications, ranging from the design of robust fingerprint matching algorithms to the generation of synthetic fingerprint images. The experimentation on real data validates the model and demonstrates its efficacy in registering minutiae data from highly distorted fingerprint samples. More... »

PAGES

371-378

Book

TITLE

Advances in Pattern Recognition — ICAPR 2001

ISBN

978-3-540-41767-5
978-3-540-44732-0

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/3-540-44732-6_38

DOI

http://dx.doi.org/10.1007/3-540-44732-6_38

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1035529341


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "DEIS, CSITE - CNR, Universit\u00e0 di Bologna, viale Risorgimento 2, 40136, Bologna, Italy", 
          "id": "http://www.grid.ac/institutes/grid.6292.f", 
          "name": [
            "DEIS, CSITE - CNR, Universit\u00e0 di Bologna, viale Risorgimento 2, 40136, Bologna, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cappelli", 
        "givenName": "R.", 
        "id": "sg:person.011324641665.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011324641665.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "DEIS, CSITE - CNR, Universit\u00e0 di Bologna, viale Risorgimento 2, 40136, Bologna, Italy", 
          "id": "http://www.grid.ac/institutes/grid.6292.f", 
          "name": [
            "DEIS, CSITE - CNR, Universit\u00e0 di Bologna, viale Risorgimento 2, 40136, Bologna, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maio", 
        "givenName": "D.", 
        "id": "sg:person.013075040365.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013075040365.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "DEIS, CSITE - CNR, Universit\u00e0 di Bologna, viale Risorgimento 2, 40136, Bologna, Italy", 
          "id": "http://www.grid.ac/institutes/grid.6292.f", 
          "name": [
            "DEIS, CSITE - CNR, Universit\u00e0 di Bologna, viale Risorgimento 2, 40136, Bologna, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maltoni", 
        "givenName": "D.", 
        "id": "sg:person.01020634131.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01020634131.30"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2001-05-09", 
    "datePublishedReg": "2001-05-09", 
    "description": "This paper introduces a plastic distortion model to cope with the nonlinear deformations characterizing fingerprint images taken with online acquisition sensors. The problem has a great impact on several practical applications, ranging from the design of robust fingerprint matching algorithms to the generation of synthetic fingerprint images. The experimentation on real data validates the model and demonstrates its efficacy in registering minutiae data from highly distorted fingerprint samples.", 
    "editor": [
      {
        "familyName": "Singh", 
        "givenName": "Sameer", 
        "type": "Person"
      }, 
      {
        "familyName": "Murshed", 
        "givenName": "Nabeel", 
        "type": "Person"
      }, 
      {
        "familyName": "Kropatsch", 
        "givenName": "Walter", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/3-540-44732-6_38", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-41767-5", 
        "978-3-540-44732-0"
      ], 
      "name": "Advances in Pattern Recognition \u2014 ICAPR 2001", 
      "type": "Book"
    }, 
    "keywords": [
      "fingerprint images", 
      "synthetic fingerprint images", 
      "minutiae data", 
      "acquisition sensors", 
      "fingerprint samples", 
      "robust fingerprint", 
      "distortion model", 
      "real data", 
      "images", 
      "practical applications", 
      "algorithm", 
      "experimentation", 
      "sensors", 
      "fingerprints", 
      "model", 
      "data", 
      "applications", 
      "design", 
      "great impact", 
      "generation", 
      "nonlinear deformation", 
      "distortion", 
      "impact", 
      "plastic distortion", 
      "deformation", 
      "efficacy", 
      "samples", 
      "paper", 
      "problem"
    ], 
    "name": "Modelling Plastic Distortion in Fingerprint Images", 
    "pagination": "371-378", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1035529341"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/3-540-44732-6_38"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/3-540-44732-6_38", 
      "https://app.dimensions.ai/details/publication/pub.1035529341"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-12-01T06:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/chapter/chapter_8.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/3-540-44732-6_38"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-540-44732-6_38'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-540-44732-6_38'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-540-44732-6_38'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-540-44732-6_38'


 

This table displays all metadata directly associated to this object as RDF triples.

112 TRIPLES      22 PREDICATES      53 URIs      46 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/3-540-44732-6_38 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N8ae5a9017b504257a76693927a4e3fc8
4 schema:datePublished 2001-05-09
5 schema:datePublishedReg 2001-05-09
6 schema:description This paper introduces a plastic distortion model to cope with the nonlinear deformations characterizing fingerprint images taken with online acquisition sensors. The problem has a great impact on several practical applications, ranging from the design of robust fingerprint matching algorithms to the generation of synthetic fingerprint images. The experimentation on real data validates the model and demonstrates its efficacy in registering minutiae data from highly distorted fingerprint samples.
7 schema:editor Ndf2bc72a6b874533822961d02ca6ed8a
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf N06ff8ad4ecae4634b04dccbfd2634068
11 schema:keywords acquisition sensors
12 algorithm
13 applications
14 data
15 deformation
16 design
17 distortion
18 distortion model
19 efficacy
20 experimentation
21 fingerprint images
22 fingerprint samples
23 fingerprints
24 generation
25 great impact
26 images
27 impact
28 minutiae data
29 model
30 nonlinear deformation
31 paper
32 plastic distortion
33 practical applications
34 problem
35 real data
36 robust fingerprint
37 samples
38 sensors
39 synthetic fingerprint images
40 schema:name Modelling Plastic Distortion in Fingerprint Images
41 schema:pagination 371-378
42 schema:productId N2bb09c9874fa4de8b795756ec31588ee
43 N8173fe03a05046f198e3dfe0894ff1e5
44 schema:publisher N648b878615d94671aff053b7fa3b4149
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035529341
46 https://doi.org/10.1007/3-540-44732-6_38
47 schema:sdDatePublished 2022-12-01T06:55
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher N7062e461fc24438488e2d2afd1739a00
50 schema:url https://doi.org/10.1007/3-540-44732-6_38
51 sgo:license sg:explorer/license/
52 sgo:sdDataset chapters
53 rdf:type schema:Chapter
54 N06ff8ad4ecae4634b04dccbfd2634068 schema:isbn 978-3-540-41767-5
55 978-3-540-44732-0
56 schema:name Advances in Pattern Recognition — ICAPR 2001
57 rdf:type schema:Book
58 N2bb09c9874fa4de8b795756ec31588ee schema:name doi
59 schema:value 10.1007/3-540-44732-6_38
60 rdf:type schema:PropertyValue
61 N3da762f20cc04b79bc502c67d1c9d87a rdf:first sg:person.013075040365.65
62 rdf:rest Nfd0b734f7d184f349e459007ff76e56d
63 N43f4e164b5134b968a5977288451f2a6 schema:familyName Kropatsch
64 schema:givenName Walter
65 rdf:type schema:Person
66 N648b878615d94671aff053b7fa3b4149 schema:name Springer Nature
67 rdf:type schema:Organisation
68 N7062e461fc24438488e2d2afd1739a00 schema:name Springer Nature - SN SciGraph project
69 rdf:type schema:Organization
70 N8173fe03a05046f198e3dfe0894ff1e5 schema:name dimensions_id
71 schema:value pub.1035529341
72 rdf:type schema:PropertyValue
73 N8ae5a9017b504257a76693927a4e3fc8 rdf:first sg:person.011324641665.26
74 rdf:rest N3da762f20cc04b79bc502c67d1c9d87a
75 Nb5f32711b8fa48c5935be715837540cb schema:familyName Singh
76 schema:givenName Sameer
77 rdf:type schema:Person
78 Ncc3402574eed45a781a328784562af47 rdf:first Nffbd1956600648cea016749801ca4d3a
79 rdf:rest Nd2d85c86f9df4a12a4c6e3389191fc50
80 Nd2d85c86f9df4a12a4c6e3389191fc50 rdf:first N43f4e164b5134b968a5977288451f2a6
81 rdf:rest rdf:nil
82 Ndf2bc72a6b874533822961d02ca6ed8a rdf:first Nb5f32711b8fa48c5935be715837540cb
83 rdf:rest Ncc3402574eed45a781a328784562af47
84 Nfd0b734f7d184f349e459007ff76e56d rdf:first sg:person.01020634131.30
85 rdf:rest rdf:nil
86 Nffbd1956600648cea016749801ca4d3a schema:familyName Murshed
87 schema:givenName Nabeel
88 rdf:type schema:Person
89 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
90 schema:name Information and Computing Sciences
91 rdf:type schema:DefinedTerm
92 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
93 schema:name Artificial Intelligence and Image Processing
94 rdf:type schema:DefinedTerm
95 sg:person.01020634131.30 schema:affiliation grid-institutes:grid.6292.f
96 schema:familyName Maltoni
97 schema:givenName D.
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01020634131.30
99 rdf:type schema:Person
100 sg:person.011324641665.26 schema:affiliation grid-institutes:grid.6292.f
101 schema:familyName Cappelli
102 schema:givenName R.
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011324641665.26
104 rdf:type schema:Person
105 sg:person.013075040365.65 schema:affiliation grid-institutes:grid.6292.f
106 schema:familyName Maio
107 schema:givenName D.
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013075040365.65
109 rdf:type schema:Person
110 grid-institutes:grid.6292.f schema:alternateName DEIS, CSITE - CNR, Università di Bologna, viale Risorgimento 2, 40136, Bologna, Italy
111 schema:name DEIS, CSITE - CNR, Università di Bologna, viale Risorgimento 2, 40136, Bologna, Italy
112 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...