A Probabilistic Approach to High-Resolution Sleep Analysis View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2001

AUTHORS

Peter Sykacek , Stephen Roberts , Iead Rezek , Arthur Flexer , Georg Dorffner

ABSTRACT

We propose in this paper an entirely probabilistic approach to sleep analysis. The analyser uses features extracted from 6 EEG channels as inputs and predicts the probabilities that the sleeping subject is either awake, in deep sleep or in rapid eye movement (REM) sleep. These probability estimates are provided for different temporal resolutions down to 1 second. The architecture uses a “divide and conquer” strategy, where the decisions of simple experts are fused by what is usually refered to as “naÿve Bayes” classification. In order to show that the proposed method provides viable means for sleep analysis, we present some results obtained from recordings of good and bad sleep and the corresponding manual scorings. More... »

PAGES

617-624

Book

TITLE

Artificial Neural Networks — ICANN 2001

ISBN

978-3-540-42486-4
978-3-540-44668-2

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/3-540-44668-0_86

DOI

http://dx.doi.org/10.1007/3-540-44668-0_86

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1004419519


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Oxford", 
          "id": "https://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "Robotics Research Group, Dept. Eng. Sci, University of Oxford, Parks Road, Oxford, OX1 6PJ, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sykacek", 
        "givenName": "Peter", 
        "id": "sg:person.01164636460.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01164636460.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Oxford", 
          "id": "https://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "Robotics Research Group, Dept. Eng. Sci, University of Oxford, Parks Road, Oxford, OX1 6PJ, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Roberts", 
        "givenName": "Stephen", 
        "id": "sg:person.01215233070.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01215233070.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Oxford", 
          "id": "https://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "Robotics Research Group, Dept. Eng. Sci, University of Oxford, Parks Road, Oxford, OX1 6PJ, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rezek", 
        "givenName": "Iead", 
        "id": "sg:person.0731174301.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0731174301.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Austrian Research Institute for Artificial Intelligence", 
          "id": "https://www.grid.ac/institutes/grid.432019.d", 
          "name": [
            "Austrian Research Institute for Artificial Intelligence (OFAI), Schottengasse 3, A-1010\u00a0Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Flexer", 
        "givenName": "Arthur", 
        "id": "sg:person.0757053000.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0757053000.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Austrian Research Institute for Artificial Intelligence", 
          "id": "https://www.grid.ac/institutes/grid.432019.d", 
          "name": [
            "Austrian Research Institute for Artificial Intelligence (OFAI), Schottengasse 3, A-1010\u00a0Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dorffner", 
        "givenName": "Georg", 
        "id": "sg:person.01121016077.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01121016077.67"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1111/1467-9868.00095", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011703011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2869.1996.00201.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053680297"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2001", 
    "datePublishedReg": "2001-01-01", 
    "description": "We propose in this paper an entirely probabilistic approach to sleep analysis. The analyser uses features extracted from 6 EEG channels as inputs and predicts the probabilities that the sleeping subject is either awake, in deep sleep or in rapid eye movement (REM) sleep. These probability estimates are provided for different temporal resolutions down to 1 second. The architecture uses a \u201cdivide and conquer\u201d strategy, where the decisions of simple experts are fused by what is usually refered to as \u201cna\u00ffve Bayes\u201d classification. In order to show that the proposed method provides viable means for sleep analysis, we present some results obtained from recordings of good and bad sleep and the corresponding manual scorings.", 
    "editor": [
      {
        "familyName": "Dorffner", 
        "givenName": "Georg", 
        "type": "Person"
      }, 
      {
        "familyName": "Bischof", 
        "givenName": "Horst", 
        "type": "Person"
      }, 
      {
        "familyName": "Hornik", 
        "givenName": "Kurt", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/3-540-44668-0_86", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-42486-4", 
        "978-3-540-44668-2"
      ], 
      "name": "Artificial Neural Networks \u2014 ICANN 2001", 
      "type": "Book"
    }, 
    "name": "A Probabilistic Approach to High-Resolution Sleep Analysis", 
    "pagination": "617-624", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/3-540-44668-0_86"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "150f1b80b55675060c0ef0560aa7653a39a7e67d36378b46936a8896560dec9f"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1004419519"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/3-540-44668-0_86", 
      "https://app.dimensions.ai/details/publication/pub.1004419519"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T12:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000245.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/3-540-44668-0_86"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-540-44668-0_86'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-540-44668-0_86'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-540-44668-0_86'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-540-44668-0_86'


 

This table displays all metadata directly associated to this object as RDF triples.

112 TRIPLES      23 PREDICATES      29 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/3-540-44668-0_86 schema:about anzsrc-for:17
2 anzsrc-for:1701
3 schema:author Nde3e2dbbe892470bbc344007124e755d
4 schema:citation https://doi.org/10.1111/1467-9868.00095
5 https://doi.org/10.1111/j.1365-2869.1996.00201.x
6 schema:datePublished 2001
7 schema:datePublishedReg 2001-01-01
8 schema:description We propose in this paper an entirely probabilistic approach to sleep analysis. The analyser uses features extracted from 6 EEG channels as inputs and predicts the probabilities that the sleeping subject is either awake, in deep sleep or in rapid eye movement (REM) sleep. These probability estimates are provided for different temporal resolutions down to 1 second. The architecture uses a “divide and conquer” strategy, where the decisions of simple experts are fused by what is usually refered to as “naÿve Bayes” classification. In order to show that the proposed method provides viable means for sleep analysis, we present some results obtained from recordings of good and bad sleep and the corresponding manual scorings.
9 schema:editor N4239292efe504f63b7a1024e2f3420ca
10 schema:genre chapter
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf N5ec199a12d3a47158988102b109f5b31
14 schema:name A Probabilistic Approach to High-Resolution Sleep Analysis
15 schema:pagination 617-624
16 schema:productId N07222a5ac86849ffb278aa4781de3325
17 N091a6498ef6f415eb7b67c5207cbe2f1
18 Nc1e7f47661034e3a9429355adee8327d
19 schema:publisher N4c1346823a2e4424a769aa68261e7d84
20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004419519
21 https://doi.org/10.1007/3-540-44668-0_86
22 schema:sdDatePublished 2019-04-15T12:29
23 schema:sdLicense https://scigraph.springernature.com/explorer/license/
24 schema:sdPublisher N64c14d4c63e14d96bb78d406ca5c0819
25 schema:url http://link.springer.com/10.1007/3-540-44668-0_86
26 sgo:license sg:explorer/license/
27 sgo:sdDataset chapters
28 rdf:type schema:Chapter
29 N07222a5ac86849ffb278aa4781de3325 schema:name doi
30 schema:value 10.1007/3-540-44668-0_86
31 rdf:type schema:PropertyValue
32 N091a6498ef6f415eb7b67c5207cbe2f1 schema:name readcube_id
33 schema:value 150f1b80b55675060c0ef0560aa7653a39a7e67d36378b46936a8896560dec9f
34 rdf:type schema:PropertyValue
35 N1d034482294c4c6a94448b5d97ea010f schema:familyName Bischof
36 schema:givenName Horst
37 rdf:type schema:Person
38 N3940fd9a84c1496bbd4f2ab5da39f81b rdf:first sg:person.0731174301.25
39 rdf:rest N763d51d765214c4e81115b0c10072960
40 N4239292efe504f63b7a1024e2f3420ca rdf:first Na91e8a961c964b458c72bc1c17be481a
41 rdf:rest Nb30f82bc75a748da9b43a076a0ad1d8f
42 N4c1346823a2e4424a769aa68261e7d84 schema:location Berlin, Heidelberg
43 schema:name Springer Berlin Heidelberg
44 rdf:type schema:Organisation
45 N5ec199a12d3a47158988102b109f5b31 schema:isbn 978-3-540-42486-4
46 978-3-540-44668-2
47 schema:name Artificial Neural Networks — ICANN 2001
48 rdf:type schema:Book
49 N64c14d4c63e14d96bb78d406ca5c0819 schema:name Springer Nature - SN SciGraph project
50 rdf:type schema:Organization
51 N763d51d765214c4e81115b0c10072960 rdf:first sg:person.0757053000.20
52 rdf:rest Nd41c7170474042a1bd9ecdfe5f263361
53 N7670277e931041479a6923c63921a809 schema:familyName Hornik
54 schema:givenName Kurt
55 rdf:type schema:Person
56 Na91e8a961c964b458c72bc1c17be481a schema:familyName Dorffner
57 schema:givenName Georg
58 rdf:type schema:Person
59 Nb30f82bc75a748da9b43a076a0ad1d8f rdf:first N1d034482294c4c6a94448b5d97ea010f
60 rdf:rest Nfb0ddfda3aa24dc69524ebb83cbeed64
61 Nba55ade8080747869af30ed2b320fecd rdf:first sg:person.01215233070.04
62 rdf:rest N3940fd9a84c1496bbd4f2ab5da39f81b
63 Nc1e7f47661034e3a9429355adee8327d schema:name dimensions_id
64 schema:value pub.1004419519
65 rdf:type schema:PropertyValue
66 Nd41c7170474042a1bd9ecdfe5f263361 rdf:first sg:person.01121016077.67
67 rdf:rest rdf:nil
68 Nde3e2dbbe892470bbc344007124e755d rdf:first sg:person.01164636460.43
69 rdf:rest Nba55ade8080747869af30ed2b320fecd
70 Nfb0ddfda3aa24dc69524ebb83cbeed64 rdf:first N7670277e931041479a6923c63921a809
71 rdf:rest rdf:nil
72 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
73 schema:name Psychology and Cognitive Sciences
74 rdf:type schema:DefinedTerm
75 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
76 schema:name Psychology
77 rdf:type schema:DefinedTerm
78 sg:person.01121016077.67 schema:affiliation https://www.grid.ac/institutes/grid.432019.d
79 schema:familyName Dorffner
80 schema:givenName Georg
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01121016077.67
82 rdf:type schema:Person
83 sg:person.01164636460.43 schema:affiliation https://www.grid.ac/institutes/grid.4991.5
84 schema:familyName Sykacek
85 schema:givenName Peter
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01164636460.43
87 rdf:type schema:Person
88 sg:person.01215233070.04 schema:affiliation https://www.grid.ac/institutes/grid.4991.5
89 schema:familyName Roberts
90 schema:givenName Stephen
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01215233070.04
92 rdf:type schema:Person
93 sg:person.0731174301.25 schema:affiliation https://www.grid.ac/institutes/grid.4991.5
94 schema:familyName Rezek
95 schema:givenName Iead
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0731174301.25
97 rdf:type schema:Person
98 sg:person.0757053000.20 schema:affiliation https://www.grid.ac/institutes/grid.432019.d
99 schema:familyName Flexer
100 schema:givenName Arthur
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0757053000.20
102 rdf:type schema:Person
103 https://doi.org/10.1111/1467-9868.00095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011703011
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1111/j.1365-2869.1996.00201.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1053680297
106 rdf:type schema:CreativeWork
107 https://www.grid.ac/institutes/grid.432019.d schema:alternateName Austrian Research Institute for Artificial Intelligence
108 schema:name Austrian Research Institute for Artificial Intelligence (OFAI), Schottengasse 3, A-1010 Vienna, Austria
109 rdf:type schema:Organization
110 https://www.grid.ac/institutes/grid.4991.5 schema:alternateName University of Oxford
111 schema:name Robotics Research Group, Dept. Eng. Sci, University of Oxford, Parks Road, Oxford, OX1 6PJ, UK
112 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...