Faster Point Multiplication on Elliptic Curves with Efficient Endomorphisms View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2001-08-02

AUTHORS

Robert P. Gallant , Robert J. Lambert , Scott A. Vanstone

ABSTRACT

The fundamental operation in elliptic curve cryptographic schemes is the multiplication of an elliptic curve point by an integer. This paper describes a new method for accelerating this operation on classes of elliptic curves that have efficiently-computable endomorphisms. One advantage of the new method is that it is applicable to a larger class of curves than previous such methods. For this special class of curves, a speedup of up to 50% can be expected over the best general methods for point multiplication. More... »

PAGES

190-200

Book

TITLE

Advances in Cryptology — CRYPTO 2001

ISBN

978-3-540-42456-7
978-3-540-44647-7

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/3-540-44647-8_11

DOI

http://dx.doi.org/10.1007/3-540-44647-8_11

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1044250953


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computation Theory and Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Certicom Research, Canada", 
          "id": "http://www.grid.ac/institutes/grid.439950.2", 
          "name": [
            "Certicom Research, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gallant", 
        "givenName": "Robert P.", 
        "id": "sg:person.014510157347.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014510157347.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Waterloo, Canada", 
          "id": "http://www.grid.ac/institutes/grid.46078.3d", 
          "name": [
            "University of Waterloo, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lambert", 
        "givenName": "Robert J.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Waterloo, Canada", 
          "id": "http://www.grid.ac/institutes/grid.46078.3d", 
          "name": [
            "Certicom Research, Canada", 
            "University of Waterloo, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vanstone", 
        "givenName": "Scott A.", 
        "id": "sg:person.010344544767.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010344544767.07"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2001-08-02", 
    "datePublishedReg": "2001-08-02", 
    "description": "The fundamental operation in elliptic curve cryptographic schemes is the multiplication of an elliptic curve point by an integer. This paper describes a new method for accelerating this operation on classes of elliptic curves that have efficiently-computable endomorphisms. One advantage of the new method is that it is applicable to a larger class of curves than previous such methods. For this special class of curves, a speedup of up to 50% can be expected over the best general methods for point multiplication.", 
    "editor": [
      {
        "familyName": "Kilian", 
        "givenName": "Joe", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/3-540-44647-8_11", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-540-42456-7", 
        "978-3-540-44647-7"
      ], 
      "name": "Advances in Cryptology \u2014 CRYPTO 2001", 
      "type": "Book"
    }, 
    "keywords": [
      "elliptic curves", 
      "point multiplication", 
      "elliptic curve cryptographic schemes", 
      "elliptic curve points", 
      "faster point multiplication", 
      "previous such methods", 
      "cryptographic schemes", 
      "large class", 
      "best general method", 
      "special class", 
      "curve points", 
      "computable endomorphisms", 
      "fundamental operation", 
      "new method", 
      "general method", 
      "efficient endomorphisms", 
      "endomorphisms", 
      "such methods", 
      "class", 
      "multiplication", 
      "speedup", 
      "integers", 
      "scheme", 
      "operation", 
      "curves", 
      "method", 
      "point", 
      "advantages", 
      "paper"
    ], 
    "name": "Faster Point Multiplication on Elliptic Curves with Efficient Endomorphisms", 
    "pagination": "190-200", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1044250953"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/3-540-44647-8_11"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/3-540-44647-8_11", 
      "https://app.dimensions.ai/details/publication/pub.1044250953"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-09-02T16:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/chapter/chapter_60.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/3-540-44647-8_11"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-540-44647-8_11'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-540-44647-8_11'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-540-44647-8_11'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-540-44647-8_11'


 

This table displays all metadata directly associated to this object as RDF triples.

105 TRIPLES      22 PREDICATES      53 URIs      46 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/3-540-44647-8_11 schema:about anzsrc-for:08
2 anzsrc-for:0802
3 schema:author N040fa609a76a4c83b6bb77d2bd8f8757
4 schema:datePublished 2001-08-02
5 schema:datePublishedReg 2001-08-02
6 schema:description The fundamental operation in elliptic curve cryptographic schemes is the multiplication of an elliptic curve point by an integer. This paper describes a new method for accelerating this operation on classes of elliptic curves that have efficiently-computable endomorphisms. One advantage of the new method is that it is applicable to a larger class of curves than previous such methods. For this special class of curves, a speedup of up to 50% can be expected over the best general methods for point multiplication.
7 schema:editor N326935f1f1f74061b9a6f96029ae3313
8 schema:genre chapter
9 schema:isAccessibleForFree true
10 schema:isPartOf N9ec5091420f94a3998be3220143bd41e
11 schema:keywords advantages
12 best general method
13 class
14 computable endomorphisms
15 cryptographic schemes
16 curve points
17 curves
18 efficient endomorphisms
19 elliptic curve cryptographic schemes
20 elliptic curve points
21 elliptic curves
22 endomorphisms
23 faster point multiplication
24 fundamental operation
25 general method
26 integers
27 large class
28 method
29 multiplication
30 new method
31 operation
32 paper
33 point
34 point multiplication
35 previous such methods
36 scheme
37 special class
38 speedup
39 such methods
40 schema:name Faster Point Multiplication on Elliptic Curves with Efficient Endomorphisms
41 schema:pagination 190-200
42 schema:productId N8f53465f52194547822c53110d4b57fc
43 Nb0d91054887e4326976cf6602dfcecf4
44 schema:publisher N698958816c104951978eb0cf985953cd
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044250953
46 https://doi.org/10.1007/3-540-44647-8_11
47 schema:sdDatePublished 2022-09-02T16:17
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher Ndc01294b0db747ef8da285243f315475
50 schema:url https://doi.org/10.1007/3-540-44647-8_11
51 sgo:license sg:explorer/license/
52 sgo:sdDataset chapters
53 rdf:type schema:Chapter
54 N040fa609a76a4c83b6bb77d2bd8f8757 rdf:first sg:person.014510157347.19
55 rdf:rest N4e8818b154374bdb8487d98aacbb8caa
56 N305670afb7bd492995c499dbadb7829e rdf:first sg:person.010344544767.07
57 rdf:rest rdf:nil
58 N326935f1f1f74061b9a6f96029ae3313 rdf:first Nd237b106ef1a464c82cea446f1996348
59 rdf:rest rdf:nil
60 N4e8818b154374bdb8487d98aacbb8caa rdf:first N71bb4d3aca4847d3a4eef3b7c913343b
61 rdf:rest N305670afb7bd492995c499dbadb7829e
62 N698958816c104951978eb0cf985953cd schema:name Springer Nature
63 rdf:type schema:Organisation
64 N71bb4d3aca4847d3a4eef3b7c913343b schema:affiliation grid-institutes:grid.46078.3d
65 schema:familyName Lambert
66 schema:givenName Robert J.
67 rdf:type schema:Person
68 N8f53465f52194547822c53110d4b57fc schema:name dimensions_id
69 schema:value pub.1044250953
70 rdf:type schema:PropertyValue
71 N9ec5091420f94a3998be3220143bd41e schema:isbn 978-3-540-42456-7
72 978-3-540-44647-7
73 schema:name Advances in Cryptology — CRYPTO 2001
74 rdf:type schema:Book
75 Nb0d91054887e4326976cf6602dfcecf4 schema:name doi
76 schema:value 10.1007/3-540-44647-8_11
77 rdf:type schema:PropertyValue
78 Nd237b106ef1a464c82cea446f1996348 schema:familyName Kilian
79 schema:givenName Joe
80 rdf:type schema:Person
81 Ndc01294b0db747ef8da285243f315475 schema:name Springer Nature - SN SciGraph project
82 rdf:type schema:Organization
83 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
84 schema:name Information and Computing Sciences
85 rdf:type schema:DefinedTerm
86 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
87 schema:name Computation Theory and Mathematics
88 rdf:type schema:DefinedTerm
89 sg:person.010344544767.07 schema:affiliation grid-institutes:grid.46078.3d
90 schema:familyName Vanstone
91 schema:givenName Scott A.
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010344544767.07
93 rdf:type schema:Person
94 sg:person.014510157347.19 schema:affiliation grid-institutes:grid.439950.2
95 schema:familyName Gallant
96 schema:givenName Robert P.
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014510157347.19
98 rdf:type schema:Person
99 grid-institutes:grid.439950.2 schema:alternateName Certicom Research, Canada
100 schema:name Certicom Research, Canada
101 rdf:type schema:Organization
102 grid-institutes:grid.46078.3d schema:alternateName University of Waterloo, Canada
103 schema:name Certicom Research, Canada
104 University of Waterloo, Canada
105 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...