Maintaining Horizontally Partitioned Warehouse Views View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2000

AUTHORS

Mei Xu , C. I. Ezeife

ABSTRACT

Data warehouses usually store large amounts of information, representing an integration of base data from different data sources over a long time period. Aggregate views can be stored as a set of its horizontal fragments for the purposes of reducing warehouse query response time and maintenance cost. This paper proposes a scheme that efficiently maintains horizontally partitioned data warehouse views. Using the proposed scheme, only one view fragment holding the relevant subset of tuples of the view is accessed for each update. The scheme also includes an approach to reduce the refresh time for maintaining views that compute aggregate functions MIN and MAX. More... »

PAGES

126-133

Book

TITLE

Data Warehousing and Knowledge Discovery

ISBN

978-3-540-67980-6
978-3-540-44466-4

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/3-540-44466-1_13

DOI

http://dx.doi.org/10.1007/3-540-44466-1_13

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1045479696


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Windsor", 
          "id": "https://www.grid.ac/institutes/grid.267455.7", 
          "name": [
            "School of Computer Science, University of Windsor, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xu", 
        "givenName": "Mei", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Windsor", 
          "id": "https://www.grid.ac/institutes/grid.267455.7", 
          "name": [
            "School of Computer Science, University of Windsor, Windsor, Ontario, Canada, N9B 3P4"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ezeife", 
        "givenName": "C. I.", 
        "id": "sg:person.01200460536.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200460536.41"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2000", 
    "datePublishedReg": "2000-01-01", 
    "description": "Data warehouses usually store large amounts of information, representing an integration of base data from different data sources over a long time period. Aggregate views can be stored as a set of its horizontal fragments for the purposes of reducing warehouse query response time and maintenance cost. This paper proposes a scheme that efficiently maintains horizontally partitioned data warehouse views. Using the proposed scheme, only one view fragment holding the relevant subset of tuples of the view is accessed for each update. The scheme also includes an approach to reduce the refresh time for maintaining views that compute aggregate functions MIN and MAX.", 
    "editor": [
      {
        "familyName": "Kambayashi", 
        "givenName": "Yahiko", 
        "type": "Person"
      }, 
      {
        "familyName": "Mohania", 
        "givenName": "Mukesh", 
        "type": "Person"
      }, 
      {
        "familyName": "Tjoa", 
        "givenName": "A. Min", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/3-540-44466-1_13", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-540-67980-6", 
        "978-3-540-44466-4"
      ], 
      "name": "Data Warehousing and Knowledge Discovery", 
      "type": "Book"
    }, 
    "name": "Maintaining Horizontally Partitioned Warehouse Views", 
    "pagination": "126-133", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/3-540-44466-1_13"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d8a3897c4fd060827177381802d2cddbd14ef0e53bfeba5517a231b6f7416ddb"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1045479696"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/3-540-44466-1_13", 
      "https://app.dimensions.ai/details/publication/pub.1045479696"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T19:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000078.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/3-540-44466-1_13"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-540-44466-1_13'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-540-44466-1_13'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-540-44466-1_13'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-540-44466-1_13'


 

This table displays all metadata directly associated to this object as RDF triples.

82 TRIPLES      22 PREDICATES      27 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/3-540-44466-1_13 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author N9e7722dda5b24bfeae8ebe1af1acab61
4 schema:datePublished 2000
5 schema:datePublishedReg 2000-01-01
6 schema:description Data warehouses usually store large amounts of information, representing an integration of base data from different data sources over a long time period. Aggregate views can be stored as a set of its horizontal fragments for the purposes of reducing warehouse query response time and maintenance cost. This paper proposes a scheme that efficiently maintains horizontally partitioned data warehouse views. Using the proposed scheme, only one view fragment holding the relevant subset of tuples of the view is accessed for each update. The scheme also includes an approach to reduce the refresh time for maintaining views that compute aggregate functions MIN and MAX.
7 schema:editor N682227caa33d4eb5814d43638aa35e1b
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree true
11 schema:isPartOf Ncbe2fee9ff01480a80913a6f4cc24345
12 schema:name Maintaining Horizontally Partitioned Warehouse Views
13 schema:pagination 126-133
14 schema:productId N0a0d771a8771487a9076099958a3ddf5
15 Nb4f09ed764b845d99fd369155f27c597
16 Nf0771a74658d4b0c86bc6984c5f3ecab
17 schema:publisher N7aae83b84003400c8d52d725ac5e5163
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045479696
19 https://doi.org/10.1007/3-540-44466-1_13
20 schema:sdDatePublished 2019-04-15T19:55
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher Nc4fde1da0f614faf84592922f2ff7fe7
23 schema:url http://link.springer.com/10.1007/3-540-44466-1_13
24 sgo:license sg:explorer/license/
25 sgo:sdDataset chapters
26 rdf:type schema:Chapter
27 N0a0d771a8771487a9076099958a3ddf5 schema:name doi
28 schema:value 10.1007/3-540-44466-1_13
29 rdf:type schema:PropertyValue
30 N682227caa33d4eb5814d43638aa35e1b rdf:first Nce11e1b9dd994db98adc1d8822240658
31 rdf:rest Nd66724c1f5844682a323a6506960d5a5
32 N7aae83b84003400c8d52d725ac5e5163 schema:location Berlin, Heidelberg
33 schema:name Springer Berlin Heidelberg
34 rdf:type schema:Organisation
35 N7e9b2e8f501847bdb12c80540e5d86c5 schema:affiliation https://www.grid.ac/institutes/grid.267455.7
36 schema:familyName Xu
37 schema:givenName Mei
38 rdf:type schema:Person
39 N9e7722dda5b24bfeae8ebe1af1acab61 rdf:first N7e9b2e8f501847bdb12c80540e5d86c5
40 rdf:rest Na02738f305da4127842639c93503ea86
41 Na02738f305da4127842639c93503ea86 rdf:first sg:person.01200460536.41
42 rdf:rest rdf:nil
43 Nb208170c2f4a49eaa34b97dc372e770e schema:familyName Tjoa
44 schema:givenName A. Min
45 rdf:type schema:Person
46 Nb4f09ed764b845d99fd369155f27c597 schema:name readcube_id
47 schema:value d8a3897c4fd060827177381802d2cddbd14ef0e53bfeba5517a231b6f7416ddb
48 rdf:type schema:PropertyValue
49 Nc4fde1da0f614faf84592922f2ff7fe7 schema:name Springer Nature - SN SciGraph project
50 rdf:type schema:Organization
51 Ncbe2fee9ff01480a80913a6f4cc24345 schema:isbn 978-3-540-44466-4
52 978-3-540-67980-6
53 schema:name Data Warehousing and Knowledge Discovery
54 rdf:type schema:Book
55 Nce11e1b9dd994db98adc1d8822240658 schema:familyName Kambayashi
56 schema:givenName Yahiko
57 rdf:type schema:Person
58 Nd0b83f4edfae48d5aa6f8e52708728e6 schema:familyName Mohania
59 schema:givenName Mukesh
60 rdf:type schema:Person
61 Nd66724c1f5844682a323a6506960d5a5 rdf:first Nd0b83f4edfae48d5aa6f8e52708728e6
62 rdf:rest Nf034a43721f94bf8bb2fc7d5f4161e79
63 Nf034a43721f94bf8bb2fc7d5f4161e79 rdf:first Nb208170c2f4a49eaa34b97dc372e770e
64 rdf:rest rdf:nil
65 Nf0771a74658d4b0c86bc6984c5f3ecab schema:name dimensions_id
66 schema:value pub.1045479696
67 rdf:type schema:PropertyValue
68 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
69 schema:name Information and Computing Sciences
70 rdf:type schema:DefinedTerm
71 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
72 schema:name Information Systems
73 rdf:type schema:DefinedTerm
74 sg:person.01200460536.41 schema:affiliation https://www.grid.ac/institutes/grid.267455.7
75 schema:familyName Ezeife
76 schema:givenName C. I.
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200460536.41
78 rdf:type schema:Person
79 https://www.grid.ac/institutes/grid.267455.7 schema:alternateName University of Windsor
80 schema:name School of Computer Science, University of Windsor, Canada
81 School of Computer Science, University of Windsor, Windsor, Ontario, Canada, N9B 3P4
82 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...