Mining Ontologies from Text View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2002-07-02

AUTHORS

Alexander Maedche , Steffen Staab

ABSTRACT

Ontologies have become an important means for structuring knowledge and building knowledge-intensive systems. For this purpose, efforts have been made to facilitate the ontology engineering process, in particular the acquisition of ontologies from domain texts. We present a general architecture for discovering conceptual structures and engineering ontologies. Based on our generic architecture we describe a case study for mining ontologies from text using methods based on dictionaries and natural language text. The case study has been carried out in the telecommunications domain. Supporting the overall text ontology engineering process, our comprehensive approach combines dictionary parsing mechanisms for acquiring a domain-specific concept taxonomy with a discovery mechanism for the acquisition of non-taxonomic conceptual relations. More... »

PAGES

189-202

Book

TITLE

Knowledge Engineering and Knowledge Management Methods, Models, and Tools

ISBN

978-3-540-41119-2
978-3-540-39967-4

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/3-540-39967-4_14

DOI

http://dx.doi.org/10.1007/3-540-39967-4_14

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1007388042


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Karlsruhe Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.7892.4", 
          "name": [
            "AIFB, Univ. Karlsruhe, D-76128, Karlsruhe, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maedche", 
        "givenName": "Alexander", 
        "id": "sg:person.011157705656.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011157705656.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Karlsruhe Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.7892.4", 
          "name": [
            "AIFB, Univ. Karlsruhe, D-76128, Karlsruhe, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Staab", 
        "givenName": "Steffen", 
        "id": "sg:person.013146116631.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013146116631.23"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.3115/974557.974588", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005349313"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0743-1066(84)90011-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010442252"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0743-1066(84)90011-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010442252"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1389-1286(00)00039-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018033523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3115/992133.992154", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044999643"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/64.621227", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061205261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7551/mitpress/7287.001.0001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110625185"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2002-07-02", 
    "datePublishedReg": "2002-07-02", 
    "description": "Ontologies have become an important means for structuring knowledge and building knowledge-intensive systems. For this purpose, efforts have been made to facilitate the ontology engineering process, in particular the acquisition of ontologies from domain texts. We present a general architecture for discovering conceptual structures and engineering ontologies. Based on our generic architecture we describe a case study for mining ontologies from text using methods based on dictionaries and natural language text. The case study has been carried out in the telecommunications domain. Supporting the overall text ontology engineering process, our comprehensive approach combines dictionary parsing mechanisms for acquiring a domain-specific concept taxonomy with a discovery mechanism for the acquisition of non-taxonomic conceptual relations.", 
    "editor": [
      {
        "familyName": "Dieng", 
        "givenName": "Rose", 
        "type": "Person"
      }, 
      {
        "familyName": "Corby", 
        "givenName": "Olivier", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/3-540-39967-4_14", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-540-41119-2", 
        "978-3-540-39967-4"
      ], 
      "name": "Knowledge Engineering and Knowledge Management Methods, Models, and Tools", 
      "type": "Book"
    }, 
    "name": "Mining Ontologies from Text", 
    "pagination": "189-202", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/3-540-39967-4_14"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2331138ae6d0084d13c67170f86e610cf0e73313fa709db7dff9215777837a9a"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1007388042"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/3-540-39967-4_14", 
      "https://app.dimensions.ai/details/publication/pub.1007388042"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T05:23", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000345_0000000345/records_64082_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F3-540-39967-4_14"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-540-39967-4_14'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-540-39967-4_14'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-540-39967-4_14'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-540-39967-4_14'


 

This table displays all metadata directly associated to this object as RDF triples.

95 TRIPLES      23 PREDICATES      32 URIs      19 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/3-540-39967-4_14 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Neef5733341694b5495eb889ea4e43f05
4 schema:citation https://doi.org/10.1016/0743-1066(84)90011-6
5 https://doi.org/10.1016/s1389-1286(00)00039-6
6 https://doi.org/10.1109/64.621227
7 https://doi.org/10.3115/974557.974588
8 https://doi.org/10.3115/992133.992154
9 https://doi.org/10.7551/mitpress/7287.001.0001
10 schema:datePublished 2002-07-02
11 schema:datePublishedReg 2002-07-02
12 schema:description Ontologies have become an important means for structuring knowledge and building knowledge-intensive systems. For this purpose, efforts have been made to facilitate the ontology engineering process, in particular the acquisition of ontologies from domain texts. We present a general architecture for discovering conceptual structures and engineering ontologies. Based on our generic architecture we describe a case study for mining ontologies from text using methods based on dictionaries and natural language text. The case study has been carried out in the telecommunications domain. Supporting the overall text ontology engineering process, our comprehensive approach combines dictionary parsing mechanisms for acquiring a domain-specific concept taxonomy with a discovery mechanism for the acquisition of non-taxonomic conceptual relations.
13 schema:editor N1ad876e7a6164a2f8cd17e140ee8396d
14 schema:genre chapter
15 schema:inLanguage en
16 schema:isAccessibleForFree true
17 schema:isPartOf N779d762ee3044234abe9763fa141644e
18 schema:name Mining Ontologies from Text
19 schema:pagination 189-202
20 schema:productId N7e337d4929c241769ae87d4efa2ba4c7
21 N880ed6273a534cf3a1890c3d77e2171d
22 Nc9cccfa251204af5849e4a819df9f6f0
23 schema:publisher Nea3abc38d0884b469d8d3d47e7549362
24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007388042
25 https://doi.org/10.1007/3-540-39967-4_14
26 schema:sdDatePublished 2019-04-16T05:23
27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
28 schema:sdPublisher N8bee5b861bf845a487a1cdf0364f1973
29 schema:url https://link.springer.com/10.1007%2F3-540-39967-4_14
30 sgo:license sg:explorer/license/
31 sgo:sdDataset chapters
32 rdf:type schema:Chapter
33 N1ad876e7a6164a2f8cd17e140ee8396d rdf:first N28ac7e7cf7e743a9b76813ab0e7bf199
34 rdf:rest Nef0ab755a7114be3992b88f261dc9955
35 N28ac7e7cf7e743a9b76813ab0e7bf199 schema:familyName Dieng
36 schema:givenName Rose
37 rdf:type schema:Person
38 N6c886d57d4de45ef829e28251531d684 schema:familyName Corby
39 schema:givenName Olivier
40 rdf:type schema:Person
41 N779d762ee3044234abe9763fa141644e schema:isbn 978-3-540-39967-4
42 978-3-540-41119-2
43 schema:name Knowledge Engineering and Knowledge Management Methods, Models, and Tools
44 rdf:type schema:Book
45 N7e337d4929c241769ae87d4efa2ba4c7 schema:name dimensions_id
46 schema:value pub.1007388042
47 rdf:type schema:PropertyValue
48 N880ed6273a534cf3a1890c3d77e2171d schema:name doi
49 schema:value 10.1007/3-540-39967-4_14
50 rdf:type schema:PropertyValue
51 N8bee5b861bf845a487a1cdf0364f1973 schema:name Springer Nature - SN SciGraph project
52 rdf:type schema:Organization
53 Nb06e5a6724314dca8e7fa067a8130e4d rdf:first sg:person.013146116631.23
54 rdf:rest rdf:nil
55 Nc9cccfa251204af5849e4a819df9f6f0 schema:name readcube_id
56 schema:value 2331138ae6d0084d13c67170f86e610cf0e73313fa709db7dff9215777837a9a
57 rdf:type schema:PropertyValue
58 Nea3abc38d0884b469d8d3d47e7549362 schema:location Berlin, Heidelberg
59 schema:name Springer Berlin Heidelberg
60 rdf:type schema:Organisation
61 Neef5733341694b5495eb889ea4e43f05 rdf:first sg:person.011157705656.26
62 rdf:rest Nb06e5a6724314dca8e7fa067a8130e4d
63 Nef0ab755a7114be3992b88f261dc9955 rdf:first N6c886d57d4de45ef829e28251531d684
64 rdf:rest rdf:nil
65 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
66 schema:name Information and Computing Sciences
67 rdf:type schema:DefinedTerm
68 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
69 schema:name Artificial Intelligence and Image Processing
70 rdf:type schema:DefinedTerm
71 sg:person.011157705656.26 schema:affiliation https://www.grid.ac/institutes/grid.7892.4
72 schema:familyName Maedche
73 schema:givenName Alexander
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011157705656.26
75 rdf:type schema:Person
76 sg:person.013146116631.23 schema:affiliation https://www.grid.ac/institutes/grid.7892.4
77 schema:familyName Staab
78 schema:givenName Steffen
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013146116631.23
80 rdf:type schema:Person
81 https://doi.org/10.1016/0743-1066(84)90011-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010442252
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1016/s1389-1286(00)00039-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018033523
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1109/64.621227 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061205261
86 rdf:type schema:CreativeWork
87 https://doi.org/10.3115/974557.974588 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005349313
88 rdf:type schema:CreativeWork
89 https://doi.org/10.3115/992133.992154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044999643
90 rdf:type schema:CreativeWork
91 https://doi.org/10.7551/mitpress/7287.001.0001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110625185
92 rdf:type schema:CreativeWork
93 https://www.grid.ac/institutes/grid.7892.4 schema:alternateName Karlsruhe Institute of Technology
94 schema:name AIFB, Univ. Karlsruhe, D-76128, Karlsruhe, Germany
95 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...