Mining Ontologies from Text View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2002-07-02

AUTHORS

Alexander Maedche , Steffen Staab

ABSTRACT

Ontologies have become an important means for structuring knowledge and building knowledge-intensive systems. For this purpose, efforts have been made to facilitate the ontology engineering process, in particular the acquisition of ontologies from domain texts. We present a general architecture for discovering conceptual structures and engineering ontologies. Based on our generic architecture we describe a case study for mining ontologies from text using methods based on dictionaries and natural language text. The case study has been carried out in the telecommunications domain. Supporting the overall text ontology engineering process, our comprehensive approach combines dictionary parsing mechanisms for acquiring a domain-specific concept taxonomy with a discovery mechanism for the acquisition of non-taxonomic conceptual relations. More... »

PAGES

189-202

Book

TITLE

Knowledge Engineering and Knowledge Management Methods, Models, and Tools

ISBN

978-3-540-41119-2
978-3-540-39967-4

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/3-540-39967-4_14

DOI

http://dx.doi.org/10.1007/3-540-39967-4_14

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1007388042


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Karlsruhe Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.7892.4", 
          "name": [
            "AIFB, Univ. Karlsruhe, D-76128, Karlsruhe, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maedche", 
        "givenName": "Alexander", 
        "id": "sg:person.011157705656.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011157705656.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Karlsruhe Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.7892.4", 
          "name": [
            "AIFB, Univ. Karlsruhe, D-76128, Karlsruhe, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Staab", 
        "givenName": "Steffen", 
        "id": "sg:person.013146116631.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013146116631.23"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.3115/974557.974588", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005349313"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0743-1066(84)90011-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010442252"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0743-1066(84)90011-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010442252"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1389-1286(00)00039-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018033523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3115/992133.992154", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044999643"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/64.621227", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061205261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7551/mitpress/7287.001.0001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110625185"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2002-07-02", 
    "datePublishedReg": "2002-07-02", 
    "description": "Ontologies have become an important means for structuring knowledge and building knowledge-intensive systems. For this purpose, efforts have been made to facilitate the ontology engineering process, in particular the acquisition of ontologies from domain texts. We present a general architecture for discovering conceptual structures and engineering ontologies. Based on our generic architecture we describe a case study for mining ontologies from text using methods based on dictionaries and natural language text. The case study has been carried out in the telecommunications domain. Supporting the overall text ontology engineering process, our comprehensive approach combines dictionary parsing mechanisms for acquiring a domain-specific concept taxonomy with a discovery mechanism for the acquisition of non-taxonomic conceptual relations.", 
    "editor": [
      {
        "familyName": "Dieng", 
        "givenName": "Rose", 
        "type": "Person"
      }, 
      {
        "familyName": "Corby", 
        "givenName": "Olivier", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/3-540-39967-4_14", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-540-41119-2", 
        "978-3-540-39967-4"
      ], 
      "name": "Knowledge Engineering and Knowledge Management Methods, Models, and Tools", 
      "type": "Book"
    }, 
    "name": "Mining Ontologies from Text", 
    "pagination": "189-202", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/3-540-39967-4_14"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2331138ae6d0084d13c67170f86e610cf0e73313fa709db7dff9215777837a9a"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1007388042"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/3-540-39967-4_14", 
      "https://app.dimensions.ai/details/publication/pub.1007388042"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T05:23", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000345_0000000345/records_64082_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F3-540-39967-4_14"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-540-39967-4_14'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-540-39967-4_14'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-540-39967-4_14'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-540-39967-4_14'


 

This table displays all metadata directly associated to this object as RDF triples.

95 TRIPLES      23 PREDICATES      32 URIs      19 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/3-540-39967-4_14 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Na344b529b75241c1b9495dc2ff9c9263
4 schema:citation https://doi.org/10.1016/0743-1066(84)90011-6
5 https://doi.org/10.1016/s1389-1286(00)00039-6
6 https://doi.org/10.1109/64.621227
7 https://doi.org/10.3115/974557.974588
8 https://doi.org/10.3115/992133.992154
9 https://doi.org/10.7551/mitpress/7287.001.0001
10 schema:datePublished 2002-07-02
11 schema:datePublishedReg 2002-07-02
12 schema:description Ontologies have become an important means for structuring knowledge and building knowledge-intensive systems. For this purpose, efforts have been made to facilitate the ontology engineering process, in particular the acquisition of ontologies from domain texts. We present a general architecture for discovering conceptual structures and engineering ontologies. Based on our generic architecture we describe a case study for mining ontologies from text using methods based on dictionaries and natural language text. The case study has been carried out in the telecommunications domain. Supporting the overall text ontology engineering process, our comprehensive approach combines dictionary parsing mechanisms for acquiring a domain-specific concept taxonomy with a discovery mechanism for the acquisition of non-taxonomic conceptual relations.
13 schema:editor N423f0d5267604e6aac7b6157ba0ab63e
14 schema:genre chapter
15 schema:inLanguage en
16 schema:isAccessibleForFree true
17 schema:isPartOf N265519f9cb6d4319b2e2252040aab399
18 schema:name Mining Ontologies from Text
19 schema:pagination 189-202
20 schema:productId N5453cd83f20a49fa991510a205c206b6
21 N5dc7a9b914ba49b99b3cf30bcbf286d0
22 Nc00889647cfc44ffb4be964776ba13f7
23 schema:publisher Na6fd0361022b4cf6a68adf2c2e38deaa
24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007388042
25 https://doi.org/10.1007/3-540-39967-4_14
26 schema:sdDatePublished 2019-04-16T05:23
27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
28 schema:sdPublisher N67e2c00a699347be9f24d468dfcf2c53
29 schema:url https://link.springer.com/10.1007%2F3-540-39967-4_14
30 sgo:license sg:explorer/license/
31 sgo:sdDataset chapters
32 rdf:type schema:Chapter
33 N265519f9cb6d4319b2e2252040aab399 schema:isbn 978-3-540-39967-4
34 978-3-540-41119-2
35 schema:name Knowledge Engineering and Knowledge Management Methods, Models, and Tools
36 rdf:type schema:Book
37 N423f0d5267604e6aac7b6157ba0ab63e rdf:first N84dfd6d7b05440f8a69beb3c43984254
38 rdf:rest N47db58db533b43bea4e8d1ea23f2d115
39 N47db58db533b43bea4e8d1ea23f2d115 rdf:first N67e2e020d2304e4ba6c1284fccf55bc5
40 rdf:rest rdf:nil
41 N4bcbc6e4e67c41849c1c8603b9a67f52 rdf:first sg:person.013146116631.23
42 rdf:rest rdf:nil
43 N5453cd83f20a49fa991510a205c206b6 schema:name doi
44 schema:value 10.1007/3-540-39967-4_14
45 rdf:type schema:PropertyValue
46 N5dc7a9b914ba49b99b3cf30bcbf286d0 schema:name readcube_id
47 schema:value 2331138ae6d0084d13c67170f86e610cf0e73313fa709db7dff9215777837a9a
48 rdf:type schema:PropertyValue
49 N67e2c00a699347be9f24d468dfcf2c53 schema:name Springer Nature - SN SciGraph project
50 rdf:type schema:Organization
51 N67e2e020d2304e4ba6c1284fccf55bc5 schema:familyName Corby
52 schema:givenName Olivier
53 rdf:type schema:Person
54 N84dfd6d7b05440f8a69beb3c43984254 schema:familyName Dieng
55 schema:givenName Rose
56 rdf:type schema:Person
57 Na344b529b75241c1b9495dc2ff9c9263 rdf:first sg:person.011157705656.26
58 rdf:rest N4bcbc6e4e67c41849c1c8603b9a67f52
59 Na6fd0361022b4cf6a68adf2c2e38deaa schema:location Berlin, Heidelberg
60 schema:name Springer Berlin Heidelberg
61 rdf:type schema:Organisation
62 Nc00889647cfc44ffb4be964776ba13f7 schema:name dimensions_id
63 schema:value pub.1007388042
64 rdf:type schema:PropertyValue
65 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
66 schema:name Information and Computing Sciences
67 rdf:type schema:DefinedTerm
68 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
69 schema:name Artificial Intelligence and Image Processing
70 rdf:type schema:DefinedTerm
71 sg:person.011157705656.26 schema:affiliation https://www.grid.ac/institutes/grid.7892.4
72 schema:familyName Maedche
73 schema:givenName Alexander
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011157705656.26
75 rdf:type schema:Person
76 sg:person.013146116631.23 schema:affiliation https://www.grid.ac/institutes/grid.7892.4
77 schema:familyName Staab
78 schema:givenName Steffen
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013146116631.23
80 rdf:type schema:Person
81 https://doi.org/10.1016/0743-1066(84)90011-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010442252
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1016/s1389-1286(00)00039-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018033523
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1109/64.621227 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061205261
86 rdf:type schema:CreativeWork
87 https://doi.org/10.3115/974557.974588 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005349313
88 rdf:type schema:CreativeWork
89 https://doi.org/10.3115/992133.992154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044999643
90 rdf:type schema:CreativeWork
91 https://doi.org/10.7551/mitpress/7287.001.0001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110625185
92 rdf:type schema:CreativeWork
93 https://www.grid.ac/institutes/grid.7892.4 schema:alternateName Karlsruhe Institute of Technology
94 schema:name AIFB, Univ. Karlsruhe, D-76128, Karlsruhe, Germany
95 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...