Mining Ontologies from Text View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2002-07-02

AUTHORS

Alexander Maedche , Steffen Staab

ABSTRACT

Ontologies have become an important means for structuring knowledge and building knowledge-intensive systems. For this purpose, efforts have been made to facilitate the ontology engineering process, in particular the acquisition of ontologies from domain texts. We present a general architecture for discovering conceptual structures and engineering ontologies. Based on our generic architecture we describe a case study for mining ontologies from text using methods based on dictionaries and natural language text. The case study has been carried out in the telecommunications domain. Supporting the overall text ontology engineering process, our comprehensive approach combines dictionary parsing mechanisms for acquiring a domain-specific concept taxonomy with a discovery mechanism for the acquisition of non-taxonomic conceptual relations. More... »

PAGES

189-202

Book

TITLE

Knowledge Engineering and Knowledge Management Methods, Models, and Tools

ISBN

978-3-540-41119-2
978-3-540-39967-4

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/3-540-39967-4_14

DOI

http://dx.doi.org/10.1007/3-540-39967-4_14

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1007388042


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Karlsruhe Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.7892.4", 
          "name": [
            "AIFB, Univ. Karlsruhe, D-76128, Karlsruhe, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maedche", 
        "givenName": "Alexander", 
        "id": "sg:person.011157705656.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011157705656.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Karlsruhe Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.7892.4", 
          "name": [
            "AIFB, Univ. Karlsruhe, D-76128, Karlsruhe, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Staab", 
        "givenName": "Steffen", 
        "id": "sg:person.013146116631.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013146116631.23"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.3115/974557.974588", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005349313"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0743-1066(84)90011-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010442252"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0743-1066(84)90011-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010442252"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1389-1286(00)00039-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018033523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3115/992133.992154", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044999643"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/64.621227", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061205261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7551/mitpress/7287.001.0001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110625185"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2002-07-02", 
    "datePublishedReg": "2002-07-02", 
    "description": "Ontologies have become an important means for structuring knowledge and building knowledge-intensive systems. For this purpose, efforts have been made to facilitate the ontology engineering process, in particular the acquisition of ontologies from domain texts. We present a general architecture for discovering conceptual structures and engineering ontologies. Based on our generic architecture we describe a case study for mining ontologies from text using methods based on dictionaries and natural language text. The case study has been carried out in the telecommunications domain. Supporting the overall text ontology engineering process, our comprehensive approach combines dictionary parsing mechanisms for acquiring a domain-specific concept taxonomy with a discovery mechanism for the acquisition of non-taxonomic conceptual relations.", 
    "editor": [
      {
        "familyName": "Dieng", 
        "givenName": "Rose", 
        "type": "Person"
      }, 
      {
        "familyName": "Corby", 
        "givenName": "Olivier", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/3-540-39967-4_14", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-540-41119-2", 
        "978-3-540-39967-4"
      ], 
      "name": "Knowledge Engineering and Knowledge Management Methods, Models, and Tools", 
      "type": "Book"
    }, 
    "name": "Mining Ontologies from Text", 
    "pagination": "189-202", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/3-540-39967-4_14"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2331138ae6d0084d13c67170f86e610cf0e73313fa709db7dff9215777837a9a"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1007388042"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/3-540-39967-4_14", 
      "https://app.dimensions.ai/details/publication/pub.1007388042"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T05:23", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000345_0000000345/records_64082_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F3-540-39967-4_14"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-540-39967-4_14'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-540-39967-4_14'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-540-39967-4_14'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-540-39967-4_14'


 

This table displays all metadata directly associated to this object as RDF triples.

95 TRIPLES      23 PREDICATES      32 URIs      19 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/3-540-39967-4_14 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N653ef028bad84a8d83e23dd3bee79192
4 schema:citation https://doi.org/10.1016/0743-1066(84)90011-6
5 https://doi.org/10.1016/s1389-1286(00)00039-6
6 https://doi.org/10.1109/64.621227
7 https://doi.org/10.3115/974557.974588
8 https://doi.org/10.3115/992133.992154
9 https://doi.org/10.7551/mitpress/7287.001.0001
10 schema:datePublished 2002-07-02
11 schema:datePublishedReg 2002-07-02
12 schema:description Ontologies have become an important means for structuring knowledge and building knowledge-intensive systems. For this purpose, efforts have been made to facilitate the ontology engineering process, in particular the acquisition of ontologies from domain texts. We present a general architecture for discovering conceptual structures and engineering ontologies. Based on our generic architecture we describe a case study for mining ontologies from text using methods based on dictionaries and natural language text. The case study has been carried out in the telecommunications domain. Supporting the overall text ontology engineering process, our comprehensive approach combines dictionary parsing mechanisms for acquiring a domain-specific concept taxonomy with a discovery mechanism for the acquisition of non-taxonomic conceptual relations.
13 schema:editor Nbf01dcab8131434692e90beed390aeb3
14 schema:genre chapter
15 schema:inLanguage en
16 schema:isAccessibleForFree true
17 schema:isPartOf Nf4286e451fb848e192e615bdf0752cf7
18 schema:name Mining Ontologies from Text
19 schema:pagination 189-202
20 schema:productId N1bdda3007928494195324deac601165f
21 N22b99c7f9645484ab121db3707a29f5c
22 N55687085be91492ebc23ea0efdc1468d
23 schema:publisher N1b97cabcca06484299df62030ad44a29
24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007388042
25 https://doi.org/10.1007/3-540-39967-4_14
26 schema:sdDatePublished 2019-04-16T05:23
27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
28 schema:sdPublisher N88c59d4828d040a99a62b9d30ce6da66
29 schema:url https://link.springer.com/10.1007%2F3-540-39967-4_14
30 sgo:license sg:explorer/license/
31 sgo:sdDataset chapters
32 rdf:type schema:Chapter
33 N1b97cabcca06484299df62030ad44a29 schema:location Berlin, Heidelberg
34 schema:name Springer Berlin Heidelberg
35 rdf:type schema:Organisation
36 N1bdda3007928494195324deac601165f schema:name readcube_id
37 schema:value 2331138ae6d0084d13c67170f86e610cf0e73313fa709db7dff9215777837a9a
38 rdf:type schema:PropertyValue
39 N22b99c7f9645484ab121db3707a29f5c schema:name dimensions_id
40 schema:value pub.1007388042
41 rdf:type schema:PropertyValue
42 N37ba91bd7de247228b27406cb8ce0203 rdf:first N86893cb9bacc4764b83d722ecb4b1c13
43 rdf:rest rdf:nil
44 N55687085be91492ebc23ea0efdc1468d schema:name doi
45 schema:value 10.1007/3-540-39967-4_14
46 rdf:type schema:PropertyValue
47 N653ef028bad84a8d83e23dd3bee79192 rdf:first sg:person.011157705656.26
48 rdf:rest Nb6d9d28d6f88454ca8156b1289be1bfc
49 N86893cb9bacc4764b83d722ecb4b1c13 schema:familyName Corby
50 schema:givenName Olivier
51 rdf:type schema:Person
52 N88c59d4828d040a99a62b9d30ce6da66 schema:name Springer Nature - SN SciGraph project
53 rdf:type schema:Organization
54 N8fbf0a9ffbd144329eda5fe7440f89e5 schema:familyName Dieng
55 schema:givenName Rose
56 rdf:type schema:Person
57 Nb6d9d28d6f88454ca8156b1289be1bfc rdf:first sg:person.013146116631.23
58 rdf:rest rdf:nil
59 Nbf01dcab8131434692e90beed390aeb3 rdf:first N8fbf0a9ffbd144329eda5fe7440f89e5
60 rdf:rest N37ba91bd7de247228b27406cb8ce0203
61 Nf4286e451fb848e192e615bdf0752cf7 schema:isbn 978-3-540-39967-4
62 978-3-540-41119-2
63 schema:name Knowledge Engineering and Knowledge Management Methods, Models, and Tools
64 rdf:type schema:Book
65 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
66 schema:name Information and Computing Sciences
67 rdf:type schema:DefinedTerm
68 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
69 schema:name Artificial Intelligence and Image Processing
70 rdf:type schema:DefinedTerm
71 sg:person.011157705656.26 schema:affiliation https://www.grid.ac/institutes/grid.7892.4
72 schema:familyName Maedche
73 schema:givenName Alexander
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011157705656.26
75 rdf:type schema:Person
76 sg:person.013146116631.23 schema:affiliation https://www.grid.ac/institutes/grid.7892.4
77 schema:familyName Staab
78 schema:givenName Steffen
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013146116631.23
80 rdf:type schema:Person
81 https://doi.org/10.1016/0743-1066(84)90011-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010442252
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1016/s1389-1286(00)00039-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018033523
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1109/64.621227 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061205261
86 rdf:type schema:CreativeWork
87 https://doi.org/10.3115/974557.974588 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005349313
88 rdf:type schema:CreativeWork
89 https://doi.org/10.3115/992133.992154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044999643
90 rdf:type schema:CreativeWork
91 https://doi.org/10.7551/mitpress/7287.001.0001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110625185
92 rdf:type schema:CreativeWork
93 https://www.grid.ac/institutes/grid.7892.4 schema:alternateName Karlsruhe Institute of Technology
94 schema:name AIFB, Univ. Karlsruhe, D-76128, Karlsruhe, Germany
95 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...