Context Based Object Detection from Video View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2003-03-14

AUTHORS

Lucas Paletta , Christian Greindl

ABSTRACT

The past few years have seen a dramatic request for semantic video analysis. Object based interpretation in real-time imposes increased challenges on resource management to maintain sufficient quality of service, and requires careful design of the system architecture. This paper focuses on the role of context for system performance in a multi-stage object detection process. We extract context from simple features to determine regions of interest, provide an innovative method to identify the object’s topology from local object features, and we outline the concept for a correspondingly structured system architecture. Performance implications are analysed with reference to the application of logo detection in sport broadcasts and provide evidence for the crucial improvements achieved from context information. More... »

PAGES

502-512

Book

TITLE

Computer Vision Systems

ISBN

978-3-540-00921-4
978-3-540-36592-1

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/3-540-36592-3_48

DOI

http://dx.doi.org/10.1007/3-540-36592-3_48

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1013059866


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Digital Image Processing, Joanneum Research, Wastiangasse 6, 8010, Graz, Austria", 
          "id": "http://www.grid.ac/institutes/grid.8684.2", 
          "name": [
            "Institute of Digital Image Processing, Joanneum Research, Wastiangasse 6, 8010, Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Paletta", 
        "givenName": "Lucas", 
        "id": "sg:person.010060055125.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010060055125.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Digital Image Processing, Joanneum Research, Wastiangasse 6, 8010, Graz, Austria", 
          "id": "http://www.grid.ac/institutes/grid.8684.2", 
          "name": [
            "Institute of Digital Image Processing, Joanneum Research, Wastiangasse 6, 8010, Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Greindl", 
        "givenName": "Christian", 
        "id": "sg:person.012566340034.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012566340034.36"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2003-03-14", 
    "datePublishedReg": "2003-03-14", 
    "description": "The past few years have seen a dramatic request for semantic video analysis. Object based interpretation in real-time imposes increased challenges on resource management to maintain sufficient quality of service, and requires careful design of the system architecture. This paper focuses on the role of context for system performance in a multi-stage object detection process. We extract context from simple features to determine regions of interest, provide an innovative method to identify the object\u2019s topology from local object features, and we outline the concept for a correspondingly structured system architecture. Performance implications are analysed with reference to the application of logo detection in sport broadcasts and provide evidence for the crucial improvements achieved from context information.", 
    "editor": [
      {
        "familyName": "Crowley", 
        "givenName": "James L.", 
        "type": "Person"
      }, 
      {
        "familyName": "Piater", 
        "givenName": "Justus H.", 
        "type": "Person"
      }, 
      {
        "familyName": "Vincze", 
        "givenName": "Markus", 
        "type": "Person"
      }, 
      {
        "familyName": "Paletta", 
        "givenName": "Lucas", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/3-540-36592-3_48", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-00921-4", 
        "978-3-540-36592-1"
      ], 
      "name": "Computer Vision Systems", 
      "type": "Book"
    }, 
    "keywords": [
      "system architecture", 
      "semantic video analysis", 
      "structured system architecture", 
      "object detection process", 
      "logo detection", 
      "context information", 
      "object detection", 
      "object topology", 
      "local object features", 
      "object features", 
      "detection process", 
      "simple features", 
      "video analysis", 
      "region of interest", 
      "sports broadcasts", 
      "system performance", 
      "resource management", 
      "architecture", 
      "performance implications", 
      "crucial improvement", 
      "careful design", 
      "topology", 
      "video", 
      "broadcast", 
      "requests", 
      "sufficient quality", 
      "objects", 
      "innovative method", 
      "detection", 
      "role of context", 
      "features", 
      "services", 
      "information", 
      "context", 
      "performance", 
      "applications", 
      "challenges", 
      "design", 
      "concept", 
      "quality", 
      "management", 
      "method", 
      "interest", 
      "improvement", 
      "process", 
      "reference", 
      "analysis", 
      "interpretation", 
      "years", 
      "region", 
      "role", 
      "implications", 
      "evidence", 
      "paper", 
      "dramatic request", 
      "multi-stage object detection process", 
      "Context Based Object Detection", 
      "Based Object Detection"
    ], 
    "name": "Context Based Object Detection from Video", 
    "pagination": "502-512", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1013059866"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/3-540-36592-3_48"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/3-540-36592-3_48", 
      "https://app.dimensions.ai/details/publication/pub.1013059866"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:22", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_395.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/3-540-36592-3_48"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-540-36592-3_48'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-540-36592-3_48'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-540-36592-3_48'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-540-36592-3_48'


 

This table displays all metadata directly associated to this object as RDF triples.

140 TRIPLES      23 PREDICATES      83 URIs      76 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/3-540-36592-3_48 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author Ndccf1ae0daa14ca3ace20b211278a052
4 schema:datePublished 2003-03-14
5 schema:datePublishedReg 2003-03-14
6 schema:description The past few years have seen a dramatic request for semantic video analysis. Object based interpretation in real-time imposes increased challenges on resource management to maintain sufficient quality of service, and requires careful design of the system architecture. This paper focuses on the role of context for system performance in a multi-stage object detection process. We extract context from simple features to determine regions of interest, provide an innovative method to identify the object’s topology from local object features, and we outline the concept for a correspondingly structured system architecture. Performance implications are analysed with reference to the application of logo detection in sport broadcasts and provide evidence for the crucial improvements achieved from context information.
7 schema:editor N85b30dbd8af248c2a9f029dec02d916f
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N6b06c8034c014e61be0bc4e22e96b7a6
12 schema:keywords Based Object Detection
13 Context Based Object Detection
14 analysis
15 applications
16 architecture
17 broadcast
18 careful design
19 challenges
20 concept
21 context
22 context information
23 crucial improvement
24 design
25 detection
26 detection process
27 dramatic request
28 evidence
29 features
30 implications
31 improvement
32 information
33 innovative method
34 interest
35 interpretation
36 local object features
37 logo detection
38 management
39 method
40 multi-stage object detection process
41 object detection
42 object detection process
43 object features
44 object topology
45 objects
46 paper
47 performance
48 performance implications
49 process
50 quality
51 reference
52 region
53 region of interest
54 requests
55 resource management
56 role
57 role of context
58 semantic video analysis
59 services
60 simple features
61 sports broadcasts
62 structured system architecture
63 sufficient quality
64 system architecture
65 system performance
66 topology
67 video
68 video analysis
69 years
70 schema:name Context Based Object Detection from Video
71 schema:pagination 502-512
72 schema:productId N60c63cc092b3457a865f437fc72b6183
73 Nd1ae8642cca143d4afba9f98e375ee55
74 schema:publisher N42c44c77680e4e0995c75933b6469e46
75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013059866
76 https://doi.org/10.1007/3-540-36592-3_48
77 schema:sdDatePublished 2022-01-01T19:22
78 schema:sdLicense https://scigraph.springernature.com/explorer/license/
79 schema:sdPublisher N861a4b394eb7443ebe060d629116c6df
80 schema:url https://doi.org/10.1007/3-540-36592-3_48
81 sgo:license sg:explorer/license/
82 sgo:sdDataset chapters
83 rdf:type schema:Chapter
84 N073c3ce0756f457aa8d41389602ed295 rdf:first N5092f94b1e334625b8b50d7ce1043249
85 rdf:rest Nf1fea8e31f9042c8ba1bf407d853ee2b
86 N15c0e66aa17c4901847e89169e91fe9b schema:familyName Paletta
87 schema:givenName Lucas
88 rdf:type schema:Person
89 N42c44c77680e4e0995c75933b6469e46 schema:name Springer Nature
90 rdf:type schema:Organisation
91 N5092f94b1e334625b8b50d7ce1043249 schema:familyName Piater
92 schema:givenName Justus H.
93 rdf:type schema:Person
94 N60c63cc092b3457a865f437fc72b6183 schema:name dimensions_id
95 schema:value pub.1013059866
96 rdf:type schema:PropertyValue
97 N62ec68d40b0741b7be44a07e377ed53c rdf:first sg:person.012566340034.36
98 rdf:rest rdf:nil
99 N6b06c8034c014e61be0bc4e22e96b7a6 schema:isbn 978-3-540-00921-4
100 978-3-540-36592-1
101 schema:name Computer Vision Systems
102 rdf:type schema:Book
103 N85b30dbd8af248c2a9f029dec02d916f rdf:first Na208b6aabef84078b120a4981ac612e2
104 rdf:rest N073c3ce0756f457aa8d41389602ed295
105 N861a4b394eb7443ebe060d629116c6df schema:name Springer Nature - SN SciGraph project
106 rdf:type schema:Organization
107 Na208b6aabef84078b120a4981ac612e2 schema:familyName Crowley
108 schema:givenName James L.
109 rdf:type schema:Person
110 Na4315f50c92f4828ab87374c91e1f4dd rdf:first N15c0e66aa17c4901847e89169e91fe9b
111 rdf:rest rdf:nil
112 Nd1ae8642cca143d4afba9f98e375ee55 schema:name doi
113 schema:value 10.1007/3-540-36592-3_48
114 rdf:type schema:PropertyValue
115 Nd6a9268b50ae46418464a35b852ed716 schema:familyName Vincze
116 schema:givenName Markus
117 rdf:type schema:Person
118 Ndccf1ae0daa14ca3ace20b211278a052 rdf:first sg:person.010060055125.29
119 rdf:rest N62ec68d40b0741b7be44a07e377ed53c
120 Nf1fea8e31f9042c8ba1bf407d853ee2b rdf:first Nd6a9268b50ae46418464a35b852ed716
121 rdf:rest Na4315f50c92f4828ab87374c91e1f4dd
122 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
123 schema:name Information and Computing Sciences
124 rdf:type schema:DefinedTerm
125 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
126 schema:name Information Systems
127 rdf:type schema:DefinedTerm
128 sg:person.010060055125.29 schema:affiliation grid-institutes:grid.8684.2
129 schema:familyName Paletta
130 schema:givenName Lucas
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010060055125.29
132 rdf:type schema:Person
133 sg:person.012566340034.36 schema:affiliation grid-institutes:grid.8684.2
134 schema:familyName Greindl
135 schema:givenName Christian
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012566340034.36
137 rdf:type schema:Person
138 grid-institutes:grid.8684.2 schema:alternateName Institute of Digital Image Processing, Joanneum Research, Wastiangasse 6, 8010, Graz, Austria
139 schema:name Institute of Digital Image Processing, Joanneum Research, Wastiangasse 6, 8010, Graz, Austria
140 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...