Ontology type: schema:Chapter
2003-03-14
AUTHORS ABSTRACTVisual object recognition using single cue information has been successfully applied in various tasks, in particular for near range. While robust classification and probabilistic representation enhance 2D pattern recognition performance, they are ‘per se’ restricted due to the limited information content of single cues. The contribution of this work is to demonstrate performance improvement using multi-cue information integrated within a probabilistic framework. 2D and 3D visual information naturally complement one another, each information source providing evidence for the occurrence of the object of interest. We demonstrate preliminary work describing Bayesian decision fusion for object detection and illustrate the method by robust recognition of traffic infrastructure. More... »
PAGES151-161
Computer Vision Systems
ISBN
978-3-540-00921-4
978-3-540-36592-1
http://scigraph.springernature.com/pub.10.1007/3-540-36592-3_15
DOIhttp://dx.doi.org/10.1007/3-540-36592-3_15
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1035337874
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Artificial Intelligence and Image Processing",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Institute of Digital Image Processing, Joanneum Research, Wastiangasse 6, 8010, Graz, Austria",
"id": "http://www.grid.ac/institutes/grid.8684.2",
"name": [
"Institute of Digital Image Processing, Joanneum Research, Wastiangasse 6, 8010, Graz, Austria"
],
"type": "Organization"
},
"familyName": "Paletta",
"givenName": "Lucas",
"id": "sg:person.010060055125.29",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010060055125.29"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute of Digital Image Processing, Joanneum Research, Wastiangasse 6, 8010, Graz, Austria",
"id": "http://www.grid.ac/institutes/grid.8684.2",
"name": [
"Institute of Digital Image Processing, Joanneum Research, Wastiangasse 6, 8010, Graz, Austria"
],
"type": "Organization"
},
"familyName": "Paar",
"givenName": "Gerhard",
"id": "sg:person.012425521201.80",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012425521201.80"
],
"type": "Person"
}
],
"datePublished": "2003-03-14",
"datePublishedReg": "2003-03-14",
"description": "Visual object recognition using single cue information has been successfully applied in various tasks, in particular for near range. While robust classification and probabilistic representation enhance 2D pattern recognition performance, they are \u2018per se\u2019 restricted due to the limited information content of single cues. The contribution of this work is to demonstrate performance improvement using multi-cue information integrated within a probabilistic framework. 2D and 3D visual information naturally complement one another, each information source providing evidence for the occurrence of the object of interest. We demonstrate preliminary work describing Bayesian decision fusion for object detection and illustrate the method by robust recognition of traffic infrastructure.",
"editor": [
{
"familyName": "Crowley",
"givenName": "James L.",
"type": "Person"
},
{
"familyName": "Piater",
"givenName": "Justus H.",
"type": "Person"
},
{
"familyName": "Vincze",
"givenName": "Markus",
"type": "Person"
},
{
"familyName": "Paletta",
"givenName": "Lucas",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/3-540-36592-3_15",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-540-00921-4",
"978-3-540-36592-1"
],
"name": "Computer Vision Systems",
"type": "Book"
},
"keywords": [
"multi-cue information",
"Bayesian decision fusion",
"object of interest",
"pattern recognition performance",
"visual object recognition",
"object detection",
"robust recognition",
"decision fusion",
"mobile mapping",
"object recognition",
"robust classification",
"recognition performance",
"probabilistic framework",
"limited information content",
"information sources",
"traffic infrastructure",
"visual information",
"performance improvement",
"information selection",
"information content",
"information",
"preliminary work",
"recognition",
"single cue",
"cue information",
"infrastructure",
"task",
"objects",
"classification",
"framework",
"work",
"near range",
"integration",
"fusion",
"performance",
"detection",
"mapping",
"selection",
"method",
"interest",
"improvement",
"cues",
"contribution",
"source",
"content",
"range",
"occurrence",
"evidence"
],
"name": "Information Selection and Probabilistic 2D \u2013 3D Integration in Mobile Mapping",
"pagination": "151-161",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1035337874"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/3-540-36592-3_15"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/3-540-36592-3_15",
"https://app.dimensions.ai/details/publication/pub.1035337874"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-20T07:49",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_73.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/3-540-36592-3_15"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-540-36592-3_15'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-540-36592-3_15'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-540-36592-3_15'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-540-36592-3_15'
This table displays all metadata directly associated to this object as RDF triples.
130 TRIPLES
23 PREDICATES
73 URIs
66 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/3-540-36592-3_15 | schema:about | anzsrc-for:08 |
2 | ″ | ″ | anzsrc-for:0801 |
3 | ″ | schema:author | N932ce944195a4bffb44241787d215160 |
4 | ″ | schema:datePublished | 2003-03-14 |
5 | ″ | schema:datePublishedReg | 2003-03-14 |
6 | ″ | schema:description | Visual object recognition using single cue information has been successfully applied in various tasks, in particular for near range. While robust classification and probabilistic representation enhance 2D pattern recognition performance, they are ‘per se’ restricted due to the limited information content of single cues. The contribution of this work is to demonstrate performance improvement using multi-cue information integrated within a probabilistic framework. 2D and 3D visual information naturally complement one another, each information source providing evidence for the occurrence of the object of interest. We demonstrate preliminary work describing Bayesian decision fusion for object detection and illustrate the method by robust recognition of traffic infrastructure. |
7 | ″ | schema:editor | N7411510b799849508563d5922a344843 |
8 | ″ | schema:genre | chapter |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | false |
11 | ″ | schema:isPartOf | Nbed6c0d0f1b14102baf11f9adb20226b |
12 | ″ | schema:keywords | Bayesian decision fusion |
13 | ″ | ″ | classification |
14 | ″ | ″ | content |
15 | ″ | ″ | contribution |
16 | ″ | ″ | cue information |
17 | ″ | ″ | cues |
18 | ″ | ″ | decision fusion |
19 | ″ | ″ | detection |
20 | ″ | ″ | evidence |
21 | ″ | ″ | framework |
22 | ″ | ″ | fusion |
23 | ″ | ″ | improvement |
24 | ″ | ″ | information |
25 | ″ | ″ | information content |
26 | ″ | ″ | information selection |
27 | ″ | ″ | information sources |
28 | ″ | ″ | infrastructure |
29 | ″ | ″ | integration |
30 | ″ | ″ | interest |
31 | ″ | ″ | limited information content |
32 | ″ | ″ | mapping |
33 | ″ | ″ | method |
34 | ″ | ″ | mobile mapping |
35 | ″ | ″ | multi-cue information |
36 | ″ | ″ | near range |
37 | ″ | ″ | object detection |
38 | ″ | ″ | object of interest |
39 | ″ | ″ | object recognition |
40 | ″ | ″ | objects |
41 | ″ | ″ | occurrence |
42 | ″ | ″ | pattern recognition performance |
43 | ″ | ″ | performance |
44 | ″ | ″ | performance improvement |
45 | ″ | ″ | preliminary work |
46 | ″ | ″ | probabilistic framework |
47 | ″ | ″ | range |
48 | ″ | ″ | recognition |
49 | ″ | ″ | recognition performance |
50 | ″ | ″ | robust classification |
51 | ″ | ″ | robust recognition |
52 | ″ | ″ | selection |
53 | ″ | ″ | single cue |
54 | ″ | ″ | source |
55 | ″ | ″ | task |
56 | ″ | ″ | traffic infrastructure |
57 | ″ | ″ | visual information |
58 | ″ | ″ | visual object recognition |
59 | ″ | ″ | work |
60 | ″ | schema:name | Information Selection and Probabilistic 2D – 3D Integration in Mobile Mapping |
61 | ″ | schema:pagination | 151-161 |
62 | ″ | schema:productId | N896ad597477f4ea092d485e407cd390e |
63 | ″ | ″ | N9cbe5df23ca94bf79c09c25d03baf846 |
64 | ″ | schema:publisher | Na5a7b4b851e942969582f04225920a9b |
65 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1035337874 |
66 | ″ | ″ | https://doi.org/10.1007/3-540-36592-3_15 |
67 | ″ | schema:sdDatePublished | 2022-05-20T07:49 |
68 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
69 | ″ | schema:sdPublisher | Necc52e16a27a4e09b7eb70a776b2b5ea |
70 | ″ | schema:url | https://doi.org/10.1007/3-540-36592-3_15 |
71 | ″ | sgo:license | sg:explorer/license/ |
72 | ″ | sgo:sdDataset | chapters |
73 | ″ | rdf:type | schema:Chapter |
74 | N00232b3110e9475182d6a6f545f83ff8 | rdf:first | sg:person.012425521201.80 |
75 | ″ | rdf:rest | rdf:nil |
76 | N11e22a39904742c19d787ffff3187436 | schema:familyName | Piater |
77 | ″ | schema:givenName | Justus H. |
78 | ″ | rdf:type | schema:Person |
79 | N1383d9f671664994adcbd0a4e8a34fb2 | schema:familyName | Vincze |
80 | ″ | schema:givenName | Markus |
81 | ″ | rdf:type | schema:Person |
82 | N48e7bb874d7245e3b75e2e2a00b3b11b | schema:familyName | Paletta |
83 | ″ | schema:givenName | Lucas |
84 | ″ | rdf:type | schema:Person |
85 | N5e80ebd48d634de8bc13b7ffc69f5ab0 | rdf:first | N48e7bb874d7245e3b75e2e2a00b3b11b |
86 | ″ | rdf:rest | rdf:nil |
87 | N73b2f4960cd542c482cab296c13d82ec | rdf:first | N1383d9f671664994adcbd0a4e8a34fb2 |
88 | ″ | rdf:rest | N5e80ebd48d634de8bc13b7ffc69f5ab0 |
89 | N7411510b799849508563d5922a344843 | rdf:first | Na18917e2bfc8450798de9935b36e3435 |
90 | ″ | rdf:rest | Nc3f9e22fb9cb4aa28e3f9df378728143 |
91 | N896ad597477f4ea092d485e407cd390e | schema:name | dimensions_id |
92 | ″ | schema:value | pub.1035337874 |
93 | ″ | rdf:type | schema:PropertyValue |
94 | N932ce944195a4bffb44241787d215160 | rdf:first | sg:person.010060055125.29 |
95 | ″ | rdf:rest | N00232b3110e9475182d6a6f545f83ff8 |
96 | N9cbe5df23ca94bf79c09c25d03baf846 | schema:name | doi |
97 | ″ | schema:value | 10.1007/3-540-36592-3_15 |
98 | ″ | rdf:type | schema:PropertyValue |
99 | Na18917e2bfc8450798de9935b36e3435 | schema:familyName | Crowley |
100 | ″ | schema:givenName | James L. |
101 | ″ | rdf:type | schema:Person |
102 | Na5a7b4b851e942969582f04225920a9b | schema:name | Springer Nature |
103 | ″ | rdf:type | schema:Organisation |
104 | Nbed6c0d0f1b14102baf11f9adb20226b | schema:isbn | 978-3-540-00921-4 |
105 | ″ | ″ | 978-3-540-36592-1 |
106 | ″ | schema:name | Computer Vision Systems |
107 | ″ | rdf:type | schema:Book |
108 | Nc3f9e22fb9cb4aa28e3f9df378728143 | rdf:first | N11e22a39904742c19d787ffff3187436 |
109 | ″ | rdf:rest | N73b2f4960cd542c482cab296c13d82ec |
110 | Necc52e16a27a4e09b7eb70a776b2b5ea | schema:name | Springer Nature - SN SciGraph project |
111 | ″ | rdf:type | schema:Organization |
112 | anzsrc-for:08 | schema:inDefinedTermSet | anzsrc-for: |
113 | ″ | schema:name | Information and Computing Sciences |
114 | ″ | rdf:type | schema:DefinedTerm |
115 | anzsrc-for:0801 | schema:inDefinedTermSet | anzsrc-for: |
116 | ″ | schema:name | Artificial Intelligence and Image Processing |
117 | ″ | rdf:type | schema:DefinedTerm |
118 | sg:person.010060055125.29 | schema:affiliation | grid-institutes:grid.8684.2 |
119 | ″ | schema:familyName | Paletta |
120 | ″ | schema:givenName | Lucas |
121 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010060055125.29 |
122 | ″ | rdf:type | schema:Person |
123 | sg:person.012425521201.80 | schema:affiliation | grid-institutes:grid.8684.2 |
124 | ″ | schema:familyName | Paar |
125 | ″ | schema:givenName | Gerhard |
126 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012425521201.80 |
127 | ″ | rdf:type | schema:Person |
128 | grid-institutes:grid.8684.2 | schema:alternateName | Institute of Digital Image Processing, Joanneum Research, Wastiangasse 6, 8010, Graz, Austria |
129 | ″ | schema:name | Institute of Digital Image Processing, Joanneum Research, Wastiangasse 6, 8010, Graz, Austria |
130 | ″ | rdf:type | schema:Organization |