Information Selection and Probabilistic 2D – 3D Integration in Mobile Mapping View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2003-03-14

AUTHORS

Lucas Paletta , Gerhard Paar

ABSTRACT

Visual object recognition using single cue information has been successfully applied in various tasks, in particular for near range. While robust classification and probabilistic representation enhance 2D pattern recognition performance, they are ‘per se’ restricted due to the limited information content of single cues. The contribution of this work is to demonstrate performance improvement using multi-cue information integrated within a probabilistic framework. 2D and 3D visual information naturally complement one another, each information source providing evidence for the occurrence of the object of interest. We demonstrate preliminary work describing Bayesian decision fusion for object detection and illustrate the method by robust recognition of traffic infrastructure. More... »

PAGES

151-161

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/3-540-36592-3_15

DOI

http://dx.doi.org/10.1007/3-540-36592-3_15

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1035337874


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Digital Image Processing, Joanneum Research, Wastiangasse 6, 8010, Graz, Austria", 
          "id": "http://www.grid.ac/institutes/grid.8684.2", 
          "name": [
            "Institute of Digital Image Processing, Joanneum Research, Wastiangasse 6, 8010, Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Paletta", 
        "givenName": "Lucas", 
        "id": "sg:person.010060055125.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010060055125.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Digital Image Processing, Joanneum Research, Wastiangasse 6, 8010, Graz, Austria", 
          "id": "http://www.grid.ac/institutes/grid.8684.2", 
          "name": [
            "Institute of Digital Image Processing, Joanneum Research, Wastiangasse 6, 8010, Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Paar", 
        "givenName": "Gerhard", 
        "id": "sg:person.012425521201.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012425521201.80"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2003-03-14", 
    "datePublishedReg": "2003-03-14", 
    "description": "Visual object recognition using single cue information has been successfully applied in various tasks, in particular for near range. While robust classification and probabilistic representation enhance 2D pattern recognition performance, they are \u2018per se\u2019 restricted due to the limited information content of single cues. The contribution of this work is to demonstrate performance improvement using multi-cue information integrated within a probabilistic framework. 2D and 3D visual information naturally complement one another, each information source providing evidence for the occurrence of the object of interest. We demonstrate preliminary work describing Bayesian decision fusion for object detection and illustrate the method by robust recognition of traffic infrastructure.", 
    "editor": [
      {
        "familyName": "Crowley", 
        "givenName": "James L.", 
        "type": "Person"
      }, 
      {
        "familyName": "Piater", 
        "givenName": "Justus H.", 
        "type": "Person"
      }, 
      {
        "familyName": "Vincze", 
        "givenName": "Markus", 
        "type": "Person"
      }, 
      {
        "familyName": "Paletta", 
        "givenName": "Lucas", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/3-540-36592-3_15", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-00921-4", 
        "978-3-540-36592-1"
      ], 
      "name": "Computer Vision Systems", 
      "type": "Book"
    }, 
    "keywords": [
      "multi-cue information", 
      "Bayesian decision fusion", 
      "object of interest", 
      "pattern recognition performance", 
      "visual object recognition", 
      "object detection", 
      "robust recognition", 
      "decision fusion", 
      "mobile mapping", 
      "object recognition", 
      "robust classification", 
      "recognition performance", 
      "probabilistic framework", 
      "limited information content", 
      "information sources", 
      "traffic infrastructure", 
      "visual information", 
      "performance improvement", 
      "information selection", 
      "information content", 
      "information", 
      "preliminary work", 
      "recognition", 
      "single cue", 
      "cue information", 
      "infrastructure", 
      "task", 
      "objects", 
      "classification", 
      "framework", 
      "work", 
      "near range", 
      "integration", 
      "fusion", 
      "performance", 
      "detection", 
      "mapping", 
      "selection", 
      "method", 
      "interest", 
      "improvement", 
      "cues", 
      "contribution", 
      "source", 
      "content", 
      "range", 
      "occurrence", 
      "evidence"
    ], 
    "name": "Information Selection and Probabilistic 2D \u2013 3D Integration in Mobile Mapping", 
    "pagination": "151-161", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1035337874"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/3-540-36592-3_15"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/3-540-36592-3_15", 
      "https://app.dimensions.ai/details/publication/pub.1035337874"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-20T07:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_73.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/3-540-36592-3_15"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-540-36592-3_15'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-540-36592-3_15'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-540-36592-3_15'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-540-36592-3_15'


 

This table displays all metadata directly associated to this object as RDF triples.

130 TRIPLES      23 PREDICATES      73 URIs      66 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/3-540-36592-3_15 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N932ce944195a4bffb44241787d215160
4 schema:datePublished 2003-03-14
5 schema:datePublishedReg 2003-03-14
6 schema:description Visual object recognition using single cue information has been successfully applied in various tasks, in particular for near range. While robust classification and probabilistic representation enhance 2D pattern recognition performance, they are ‘per se’ restricted due to the limited information content of single cues. The contribution of this work is to demonstrate performance improvement using multi-cue information integrated within a probabilistic framework. 2D and 3D visual information naturally complement one another, each information source providing evidence for the occurrence of the object of interest. We demonstrate preliminary work describing Bayesian decision fusion for object detection and illustrate the method by robust recognition of traffic infrastructure.
7 schema:editor N7411510b799849508563d5922a344843
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Nbed6c0d0f1b14102baf11f9adb20226b
12 schema:keywords Bayesian decision fusion
13 classification
14 content
15 contribution
16 cue information
17 cues
18 decision fusion
19 detection
20 evidence
21 framework
22 fusion
23 improvement
24 information
25 information content
26 information selection
27 information sources
28 infrastructure
29 integration
30 interest
31 limited information content
32 mapping
33 method
34 mobile mapping
35 multi-cue information
36 near range
37 object detection
38 object of interest
39 object recognition
40 objects
41 occurrence
42 pattern recognition performance
43 performance
44 performance improvement
45 preliminary work
46 probabilistic framework
47 range
48 recognition
49 recognition performance
50 robust classification
51 robust recognition
52 selection
53 single cue
54 source
55 task
56 traffic infrastructure
57 visual information
58 visual object recognition
59 work
60 schema:name Information Selection and Probabilistic 2D – 3D Integration in Mobile Mapping
61 schema:pagination 151-161
62 schema:productId N896ad597477f4ea092d485e407cd390e
63 N9cbe5df23ca94bf79c09c25d03baf846
64 schema:publisher Na5a7b4b851e942969582f04225920a9b
65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035337874
66 https://doi.org/10.1007/3-540-36592-3_15
67 schema:sdDatePublished 2022-05-20T07:49
68 schema:sdLicense https://scigraph.springernature.com/explorer/license/
69 schema:sdPublisher Necc52e16a27a4e09b7eb70a776b2b5ea
70 schema:url https://doi.org/10.1007/3-540-36592-3_15
71 sgo:license sg:explorer/license/
72 sgo:sdDataset chapters
73 rdf:type schema:Chapter
74 N00232b3110e9475182d6a6f545f83ff8 rdf:first sg:person.012425521201.80
75 rdf:rest rdf:nil
76 N11e22a39904742c19d787ffff3187436 schema:familyName Piater
77 schema:givenName Justus H.
78 rdf:type schema:Person
79 N1383d9f671664994adcbd0a4e8a34fb2 schema:familyName Vincze
80 schema:givenName Markus
81 rdf:type schema:Person
82 N48e7bb874d7245e3b75e2e2a00b3b11b schema:familyName Paletta
83 schema:givenName Lucas
84 rdf:type schema:Person
85 N5e80ebd48d634de8bc13b7ffc69f5ab0 rdf:first N48e7bb874d7245e3b75e2e2a00b3b11b
86 rdf:rest rdf:nil
87 N73b2f4960cd542c482cab296c13d82ec rdf:first N1383d9f671664994adcbd0a4e8a34fb2
88 rdf:rest N5e80ebd48d634de8bc13b7ffc69f5ab0
89 N7411510b799849508563d5922a344843 rdf:first Na18917e2bfc8450798de9935b36e3435
90 rdf:rest Nc3f9e22fb9cb4aa28e3f9df378728143
91 N896ad597477f4ea092d485e407cd390e schema:name dimensions_id
92 schema:value pub.1035337874
93 rdf:type schema:PropertyValue
94 N932ce944195a4bffb44241787d215160 rdf:first sg:person.010060055125.29
95 rdf:rest N00232b3110e9475182d6a6f545f83ff8
96 N9cbe5df23ca94bf79c09c25d03baf846 schema:name doi
97 schema:value 10.1007/3-540-36592-3_15
98 rdf:type schema:PropertyValue
99 Na18917e2bfc8450798de9935b36e3435 schema:familyName Crowley
100 schema:givenName James L.
101 rdf:type schema:Person
102 Na5a7b4b851e942969582f04225920a9b schema:name Springer Nature
103 rdf:type schema:Organisation
104 Nbed6c0d0f1b14102baf11f9adb20226b schema:isbn 978-3-540-00921-4
105 978-3-540-36592-1
106 schema:name Computer Vision Systems
107 rdf:type schema:Book
108 Nc3f9e22fb9cb4aa28e3f9df378728143 rdf:first N11e22a39904742c19d787ffff3187436
109 rdf:rest N73b2f4960cd542c482cab296c13d82ec
110 Necc52e16a27a4e09b7eb70a776b2b5ea schema:name Springer Nature - SN SciGraph project
111 rdf:type schema:Organization
112 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
113 schema:name Information and Computing Sciences
114 rdf:type schema:DefinedTerm
115 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
116 schema:name Artificial Intelligence and Image Processing
117 rdf:type schema:DefinedTerm
118 sg:person.010060055125.29 schema:affiliation grid-institutes:grid.8684.2
119 schema:familyName Paletta
120 schema:givenName Lucas
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010060055125.29
122 rdf:type schema:Person
123 sg:person.012425521201.80 schema:affiliation grid-institutes:grid.8684.2
124 schema:familyName Paar
125 schema:givenName Gerhard
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012425521201.80
127 rdf:type schema:Person
128 grid-institutes:grid.8684.2 schema:alternateName Institute of Digital Image Processing, Joanneum Research, Wastiangasse 6, 8010, Graz, Austria
129 schema:name Institute of Digital Image Processing, Joanneum Research, Wastiangasse 6, 8010, Graz, Austria
130 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...