Information Selection and Probabilistic 2D – 3D Integration in Mobile Mapping View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2003-03-14

AUTHORS

Lucas Paletta , Gerhard Paar

ABSTRACT

Visual object recognition using single cue information has been successfully applied in various tasks, in particular for near range. While robust classification and probabilistic representation enhance 2D pattern recognition performance, they are ‘per se’ restricted due to the limited information content of single cues. The contribution of this work is to demonstrate performance improvement using multi-cue information integrated within a probabilistic framework. 2D and 3D visual information naturally complement one another, each information source providing evidence for the occurrence of the object of interest. We demonstrate preliminary work describing Bayesian decision fusion for object detection and illustrate the method by robust recognition of traffic infrastructure. More... »

PAGES

151-161

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/3-540-36592-3_15

DOI

http://dx.doi.org/10.1007/3-540-36592-3_15

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1035337874


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Digital Image Processing, Joanneum Research, Wastiangasse 6, 8010, Graz, Austria", 
          "id": "http://www.grid.ac/institutes/grid.8684.2", 
          "name": [
            "Institute of Digital Image Processing, Joanneum Research, Wastiangasse 6, 8010, Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Paletta", 
        "givenName": "Lucas", 
        "id": "sg:person.010060055125.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010060055125.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Digital Image Processing, Joanneum Research, Wastiangasse 6, 8010, Graz, Austria", 
          "id": "http://www.grid.ac/institutes/grid.8684.2", 
          "name": [
            "Institute of Digital Image Processing, Joanneum Research, Wastiangasse 6, 8010, Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Paar", 
        "givenName": "Gerhard", 
        "id": "sg:person.012425521201.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012425521201.80"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2003-03-14", 
    "datePublishedReg": "2003-03-14", 
    "description": "Visual object recognition using single cue information has been successfully applied in various tasks, in particular for near range. While robust classification and probabilistic representation enhance 2D pattern recognition performance, they are \u2018per se\u2019 restricted due to the limited information content of single cues. The contribution of this work is to demonstrate performance improvement using multi-cue information integrated within a probabilistic framework. 2D and 3D visual information naturally complement one another, each information source providing evidence for the occurrence of the object of interest. We demonstrate preliminary work describing Bayesian decision fusion for object detection and illustrate the method by robust recognition of traffic infrastructure.", 
    "editor": [
      {
        "familyName": "Crowley", 
        "givenName": "James L.", 
        "type": "Person"
      }, 
      {
        "familyName": "Piater", 
        "givenName": "Justus H.", 
        "type": "Person"
      }, 
      {
        "familyName": "Vincze", 
        "givenName": "Markus", 
        "type": "Person"
      }, 
      {
        "familyName": "Paletta", 
        "givenName": "Lucas", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/3-540-36592-3_15", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-00921-4", 
        "978-3-540-36592-1"
      ], 
      "name": "Computer Vision Systems", 
      "type": "Book"
    }, 
    "keywords": [
      "multi-cue information", 
      "object of interest", 
      "pattern recognition performance", 
      "visual object recognition", 
      "object detection", 
      "robust recognition", 
      "decision fusion", 
      "object recognition", 
      "mobile mapping", 
      "recognition performance", 
      "Bayesian decision fusion", 
      "robust classification", 
      "probabilistic framework", 
      "performance improvement", 
      "traffic infrastructure", 
      "limited information content", 
      "information sources", 
      "visual information", 
      "information selection", 
      "information content", 
      "information", 
      "preliminary work", 
      "single cue", 
      "recognition", 
      "infrastructure", 
      "cue information", 
      "objects", 
      "task", 
      "framework", 
      "classification", 
      "work", 
      "integration", 
      "performance", 
      "near range", 
      "detection", 
      "mapping", 
      "fusion", 
      "selection", 
      "method", 
      "improvement", 
      "interest", 
      "cues", 
      "contribution", 
      "source", 
      "content", 
      "range", 
      "occurrence", 
      "evidence", 
      "single cue information", 
      "probabilistic representation enhance 2D pattern recognition performance", 
      "representation enhance 2D pattern recognition performance", 
      "enhance 2D pattern recognition performance", 
      "Probabilistic 2D \u2013 3D Integration"
    ], 
    "name": "Information Selection and Probabilistic 2D \u2013 3D Integration in Mobile Mapping", 
    "pagination": "151-161", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1035337874"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/3-540-36592-3_15"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/3-540-36592-3_15", 
      "https://app.dimensions.ai/details/publication/pub.1035337874"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_89.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/3-540-36592-3_15"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-540-36592-3_15'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-540-36592-3_15'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-540-36592-3_15'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-540-36592-3_15'


 

This table displays all metadata directly associated to this object as RDF triples.

135 TRIPLES      23 PREDICATES      78 URIs      71 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/3-540-36592-3_15 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N214fa34e099d487fbf0c676d13561e74
4 schema:datePublished 2003-03-14
5 schema:datePublishedReg 2003-03-14
6 schema:description Visual object recognition using single cue information has been successfully applied in various tasks, in particular for near range. While robust classification and probabilistic representation enhance 2D pattern recognition performance, they are ‘per se’ restricted due to the limited information content of single cues. The contribution of this work is to demonstrate performance improvement using multi-cue information integrated within a probabilistic framework. 2D and 3D visual information naturally complement one another, each information source providing evidence for the occurrence of the object of interest. We demonstrate preliminary work describing Bayesian decision fusion for object detection and illustrate the method by robust recognition of traffic infrastructure.
7 schema:editor Nc80619ceadac4c12a4dda7385541f9b5
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N651adb2b8a4d49f3aa6e2f5b57b27e2c
12 schema:keywords Bayesian decision fusion
13 Probabilistic 2D – 3D Integration
14 classification
15 content
16 contribution
17 cue information
18 cues
19 decision fusion
20 detection
21 enhance 2D pattern recognition performance
22 evidence
23 framework
24 fusion
25 improvement
26 information
27 information content
28 information selection
29 information sources
30 infrastructure
31 integration
32 interest
33 limited information content
34 mapping
35 method
36 mobile mapping
37 multi-cue information
38 near range
39 object detection
40 object of interest
41 object recognition
42 objects
43 occurrence
44 pattern recognition performance
45 performance
46 performance improvement
47 preliminary work
48 probabilistic framework
49 probabilistic representation enhance 2D pattern recognition performance
50 range
51 recognition
52 recognition performance
53 representation enhance 2D pattern recognition performance
54 robust classification
55 robust recognition
56 selection
57 single cue
58 single cue information
59 source
60 task
61 traffic infrastructure
62 visual information
63 visual object recognition
64 work
65 schema:name Information Selection and Probabilistic 2D – 3D Integration in Mobile Mapping
66 schema:pagination 151-161
67 schema:productId N4514ca62944e4109936e7ea193039e67
68 Nd691f44c63714df1885f61ae60e32a7a
69 schema:publisher N65177822b90c4da5b6f1b4382761ec22
70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035337874
71 https://doi.org/10.1007/3-540-36592-3_15
72 schema:sdDatePublished 2022-01-01T19:27
73 schema:sdLicense https://scigraph.springernature.com/explorer/license/
74 schema:sdPublisher Nbe83fa8be54b414e8c0676e395bafecf
75 schema:url https://doi.org/10.1007/3-540-36592-3_15
76 sgo:license sg:explorer/license/
77 sgo:sdDataset chapters
78 rdf:type schema:Chapter
79 N1653ca1c5bc949ce8b21e47d4c15c111 rdf:first N2ba4d80119ee493bba65d57a5d4fd836
80 rdf:rest Nd9bad97bfb6f47db83ad5577cd0f0938
81 N214fa34e099d487fbf0c676d13561e74 rdf:first sg:person.010060055125.29
82 rdf:rest N59641d0295f4410f96d6df0946044f69
83 N2ba4d80119ee493bba65d57a5d4fd836 schema:familyName Vincze
84 schema:givenName Markus
85 rdf:type schema:Person
86 N4514ca62944e4109936e7ea193039e67 schema:name doi
87 schema:value 10.1007/3-540-36592-3_15
88 rdf:type schema:PropertyValue
89 N59641d0295f4410f96d6df0946044f69 rdf:first sg:person.012425521201.80
90 rdf:rest rdf:nil
91 N65177822b90c4da5b6f1b4382761ec22 schema:name Springer Nature
92 rdf:type schema:Organisation
93 N651adb2b8a4d49f3aa6e2f5b57b27e2c schema:isbn 978-3-540-00921-4
94 978-3-540-36592-1
95 schema:name Computer Vision Systems
96 rdf:type schema:Book
97 N759761771feb482691f1dee7d1bac1a4 schema:familyName Paletta
98 schema:givenName Lucas
99 rdf:type schema:Person
100 Nb5a7f1306c7c4008a50b50e2ac795e9e schema:familyName Piater
101 schema:givenName Justus H.
102 rdf:type schema:Person
103 Nbe83fa8be54b414e8c0676e395bafecf schema:name Springer Nature - SN SciGraph project
104 rdf:type schema:Organization
105 Nc80619ceadac4c12a4dda7385541f9b5 rdf:first Ne53f364097bf4b8f8c385b0c1c269edf
106 rdf:rest Nfd4e099f0c244c2595d44e0ef1bb8cc5
107 Nd691f44c63714df1885f61ae60e32a7a schema:name dimensions_id
108 schema:value pub.1035337874
109 rdf:type schema:PropertyValue
110 Nd9bad97bfb6f47db83ad5577cd0f0938 rdf:first N759761771feb482691f1dee7d1bac1a4
111 rdf:rest rdf:nil
112 Ne53f364097bf4b8f8c385b0c1c269edf schema:familyName Crowley
113 schema:givenName James L.
114 rdf:type schema:Person
115 Nfd4e099f0c244c2595d44e0ef1bb8cc5 rdf:first Nb5a7f1306c7c4008a50b50e2ac795e9e
116 rdf:rest N1653ca1c5bc949ce8b21e47d4c15c111
117 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
118 schema:name Information and Computing Sciences
119 rdf:type schema:DefinedTerm
120 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
121 schema:name Artificial Intelligence and Image Processing
122 rdf:type schema:DefinedTerm
123 sg:person.010060055125.29 schema:affiliation grid-institutes:grid.8684.2
124 schema:familyName Paletta
125 schema:givenName Lucas
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010060055125.29
127 rdf:type schema:Person
128 sg:person.012425521201.80 schema:affiliation grid-institutes:grid.8684.2
129 schema:familyName Paar
130 schema:givenName Gerhard
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012425521201.80
132 rdf:type schema:Person
133 grid-institutes:grid.8684.2 schema:alternateName Institute of Digital Image Processing, Joanneum Research, Wastiangasse 6, 8010, Graz, Austria
134 schema:name Institute of Digital Image Processing, Joanneum Research, Wastiangasse 6, 8010, Graz, Austria
135 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...