Physics of the Monopoles in QCD View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2003-05-21

AUTHORS

Valentine I. Zakharov

ABSTRACT

We discuss implications of the recent measurements of the non-Abelian action density associated with the monopoles condensed in the confining phase of gluodynamics. The radius of the monopole determined in terms of the action was found to be small numerically. As far as the condensation of the monopoles is described in terms of a scalar field, a fine tuning is then implied. In other words, a hierarchy exists between the self energy of the monopole and the temperature of the confinement-deconfinement phase transition. The ratio of the two scales is no less than a factor of 10. Moreover, we argue that the hierarchy scale can well eventually extend to a few hundred GeV on the ultraviolet side. The corresponding phenomenology is discussed, mostly within the polymer picture of the monopole condensation. More... »

PAGES

344-356

References to SciGraph publications

  • 2001-03. Magnetic monopoles, alive in PHYSICS OF ATOMIC NUCLEI
  • Book

    TITLE

    Particle Physics in the New Millennium

    ISBN

    978-3-540-00711-1
    978-3-540-36539-6

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/3-540-36539-7_25

    DOI

    http://dx.doi.org/10.1007/3-540-36539-7_25

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1039065074


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Max Planck Institute for Physics", 
              "id": "https://www.grid.ac/institutes/grid.435824.c", 
              "name": [
                "Max-Planck Institut f\u00fcr Physik, F\u00f6hringer Ring 6, 80805, M\u00fcnchen, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zakharov", 
            "givenName": "Valentine I.", 
            "id": "sg:person.016527272126.06", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016527272126.06"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/s0550-3213(00)00603-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001162406"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-2693(94)01458-o", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009730618"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(83)90213-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023207884"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(83)90213-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023207884"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-2693(75)90162-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026506479"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-2693(75)90162-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026506479"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-2693(95)00422-h", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033619969"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-2693(90)90497-t", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035701844"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-2693(90)90497-t", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035701844"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0920-5632(01)01797-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040228210"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/1.1358482", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041005672", 
              "https://doi.org/10.1134/1.1358482"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.42.4257", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060698837"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.42.4257", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060698837"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.41.351", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060783233"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.41.351", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060783233"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1143/ptps.131.161", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063142452"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1143/ptps.138.34", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063142626"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2003-05-21", 
        "datePublishedReg": "2003-05-21", 
        "description": "We discuss implications of the recent measurements of the non-Abelian action density associated with the monopoles condensed in the confining phase of gluodynamics. The radius of the monopole determined in terms of the action was found to be small numerically. As far as the condensation of the monopoles is described in terms of a scalar field, a fine tuning is then implied. In other words, a hierarchy exists between the self energy of the monopole and the temperature of the confinement-deconfinement phase transition. The ratio of the two scales is no less than a factor of 10. Moreover, we argue that the hierarchy scale can well eventually extend to a few hundred GeV on the ultraviolet side. The corresponding phenomenology is discussed, mostly within the polymer picture of the monopole condensation.", 
        "editor": [
          {
            "familyName": "Trampeti\u0107", 
            "givenName": "Josip", 
            "type": "Person"
          }, 
          {
            "familyName": "Wess", 
            "givenName": "Julius", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/3-540-36539-7_25", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-3-540-00711-1", 
            "978-3-540-36539-6"
          ], 
          "name": "Particle Physics in the New Millennium", 
          "type": "Book"
        }, 
        "name": "Physics of the Monopoles in QCD", 
        "pagination": "344-356", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/3-540-36539-7_25"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "ba15d857881791369a9dffe931b66686584ff95ebf7bc7046799fcbdef0367d0"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1039065074"
            ]
          }
        ], 
        "publisher": {
          "location": "Berlin, Heidelberg", 
          "name": "Springer Berlin Heidelberg", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/3-540-36539-7_25", 
          "https://app.dimensions.ai/details/publication/pub.1039065074"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-16T05:44", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89801_00000001.jsonl", 
        "type": "Chapter", 
        "url": "https://link.springer.com/10.1007%2F3-540-36539-7_25"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-540-36539-7_25'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-540-36539-7_25'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-540-36539-7_25'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-540-36539-7_25'


     

    This table displays all metadata directly associated to this object as RDF triples.

    107 TRIPLES      23 PREDICATES      38 URIs      19 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/3-540-36539-7_25 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author Nc37b430e21f045ceaf0b9ff854ac756b
    4 schema:citation sg:pub.10.1134/1.1358482
    5 https://doi.org/10.1016/0370-2693(75)90162-8
    6 https://doi.org/10.1016/0370-2693(90)90497-t
    7 https://doi.org/10.1016/0370-2693(94)01458-o
    8 https://doi.org/10.1016/0370-2693(95)00422-h
    9 https://doi.org/10.1016/0550-3213(83)90213-4
    10 https://doi.org/10.1016/s0550-3213(00)00603-9
    11 https://doi.org/10.1016/s0920-5632(01)01797-2
    12 https://doi.org/10.1103/physrevd.42.4257
    13 https://doi.org/10.1103/physrevlett.41.351
    14 https://doi.org/10.1143/ptps.131.161
    15 https://doi.org/10.1143/ptps.138.34
    16 schema:datePublished 2003-05-21
    17 schema:datePublishedReg 2003-05-21
    18 schema:description We discuss implications of the recent measurements of the non-Abelian action density associated with the monopoles condensed in the confining phase of gluodynamics. The radius of the monopole determined in terms of the action was found to be small numerically. As far as the condensation of the monopoles is described in terms of a scalar field, a fine tuning is then implied. In other words, a hierarchy exists between the self energy of the monopole and the temperature of the confinement-deconfinement phase transition. The ratio of the two scales is no less than a factor of 10. Moreover, we argue that the hierarchy scale can well eventually extend to a few hundred GeV on the ultraviolet side. The corresponding phenomenology is discussed, mostly within the polymer picture of the monopole condensation.
    19 schema:editor N11c5ee64ce04456fa8b5aa8971343840
    20 schema:genre chapter
    21 schema:inLanguage en
    22 schema:isAccessibleForFree false
    23 schema:isPartOf N61105343b0d34a668d96072d453b45df
    24 schema:name Physics of the Monopoles in QCD
    25 schema:pagination 344-356
    26 schema:productId N12ac3cc9a84b4c369d838339064747a6
    27 N72001f04d8ed4edaa5168b44f2028960
    28 Nb379228cb9a04c0d800109cefa413c18
    29 schema:publisher N6a7439c2ed62414b9f8a721a5c3368c9
    30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039065074
    31 https://doi.org/10.1007/3-540-36539-7_25
    32 schema:sdDatePublished 2019-04-16T05:44
    33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    34 schema:sdPublisher N777b6cdb104f4203ac791df93b66a8f7
    35 schema:url https://link.springer.com/10.1007%2F3-540-36539-7_25
    36 sgo:license sg:explorer/license/
    37 sgo:sdDataset chapters
    38 rdf:type schema:Chapter
    39 N11c5ee64ce04456fa8b5aa8971343840 rdf:first N43cdebae2ac4490aaa4b7782a079099d
    40 rdf:rest Nb6e88952e69043018639048ad1585216
    41 N12ac3cc9a84b4c369d838339064747a6 schema:name doi
    42 schema:value 10.1007/3-540-36539-7_25
    43 rdf:type schema:PropertyValue
    44 N43cdebae2ac4490aaa4b7782a079099d schema:familyName Trampetić
    45 schema:givenName Josip
    46 rdf:type schema:Person
    47 N61105343b0d34a668d96072d453b45df schema:isbn 978-3-540-00711-1
    48 978-3-540-36539-6
    49 schema:name Particle Physics in the New Millennium
    50 rdf:type schema:Book
    51 N6a7439c2ed62414b9f8a721a5c3368c9 schema:location Berlin, Heidelberg
    52 schema:name Springer Berlin Heidelberg
    53 rdf:type schema:Organisation
    54 N72001f04d8ed4edaa5168b44f2028960 schema:name dimensions_id
    55 schema:value pub.1039065074
    56 rdf:type schema:PropertyValue
    57 N777b6cdb104f4203ac791df93b66a8f7 schema:name Springer Nature - SN SciGraph project
    58 rdf:type schema:Organization
    59 N9930052002464c50b872468ca26a97f6 schema:familyName Wess
    60 schema:givenName Julius
    61 rdf:type schema:Person
    62 Nb379228cb9a04c0d800109cefa413c18 schema:name readcube_id
    63 schema:value ba15d857881791369a9dffe931b66686584ff95ebf7bc7046799fcbdef0367d0
    64 rdf:type schema:PropertyValue
    65 Nb6e88952e69043018639048ad1585216 rdf:first N9930052002464c50b872468ca26a97f6
    66 rdf:rest rdf:nil
    67 Nc37b430e21f045ceaf0b9ff854ac756b rdf:first sg:person.016527272126.06
    68 rdf:rest rdf:nil
    69 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    70 schema:name Engineering
    71 rdf:type schema:DefinedTerm
    72 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    73 schema:name Materials Engineering
    74 rdf:type schema:DefinedTerm
    75 sg:person.016527272126.06 schema:affiliation https://www.grid.ac/institutes/grid.435824.c
    76 schema:familyName Zakharov
    77 schema:givenName Valentine I.
    78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016527272126.06
    79 rdf:type schema:Person
    80 sg:pub.10.1134/1.1358482 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041005672
    81 https://doi.org/10.1134/1.1358482
    82 rdf:type schema:CreativeWork
    83 https://doi.org/10.1016/0370-2693(75)90162-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026506479
    84 rdf:type schema:CreativeWork
    85 https://doi.org/10.1016/0370-2693(90)90497-t schema:sameAs https://app.dimensions.ai/details/publication/pub.1035701844
    86 rdf:type schema:CreativeWork
    87 https://doi.org/10.1016/0370-2693(94)01458-o schema:sameAs https://app.dimensions.ai/details/publication/pub.1009730618
    88 rdf:type schema:CreativeWork
    89 https://doi.org/10.1016/0370-2693(95)00422-h schema:sameAs https://app.dimensions.ai/details/publication/pub.1033619969
    90 rdf:type schema:CreativeWork
    91 https://doi.org/10.1016/0550-3213(83)90213-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023207884
    92 rdf:type schema:CreativeWork
    93 https://doi.org/10.1016/s0550-3213(00)00603-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001162406
    94 rdf:type schema:CreativeWork
    95 https://doi.org/10.1016/s0920-5632(01)01797-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040228210
    96 rdf:type schema:CreativeWork
    97 https://doi.org/10.1103/physrevd.42.4257 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060698837
    98 rdf:type schema:CreativeWork
    99 https://doi.org/10.1103/physrevlett.41.351 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060783233
    100 rdf:type schema:CreativeWork
    101 https://doi.org/10.1143/ptps.131.161 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063142452
    102 rdf:type schema:CreativeWork
    103 https://doi.org/10.1143/ptps.138.34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063142626
    104 rdf:type schema:CreativeWork
    105 https://www.grid.ac/institutes/grid.435824.c schema:alternateName Max Planck Institute for Physics
    106 schema:name Max-Planck Institut für Physik, Föhringer Ring 6, 80805, München, Germany
    107 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...