Position Coded Pre-order Linked WAP-Tree for Web Log Sequential Pattern Mining View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2003

AUTHORS

Yi Lu , C. I. Ezeife

ABSTRACT

Web access pattern tree algorithm mines web log access sequences by first storing the original web access sequence database on a prefix tree (WAP-tree). WAP-tree algorithm then mines frequent sequences from the WAP-tree by recursively re-constructing intermediate WAP-trees, starting with their suffix subsequences. This paper proposes an efficient approach for using the preorder linked WAP-trees with binary position codes assigned to each node, to mine frequent sequences, which eliminates the need to engage in numerous re-construction of intermediate WAP-trees during mining. Experiments show huge performance advantages for sequential mining using prefix linked WAP-tree technique. More... »

PAGES

337-349

References to SciGraph publications

  • 1996. Mining sequential patterns: Generalizations and performance improvements in ADVANCES IN DATABASE TECHNOLOGY — EDBT '96
  • 2000-03. Analysis of navigation behaviour in web sites integrating multiple information systems in THE VLDB JOURNAL
  • 2000. Mining Access Patterns Efficiently from Web Logs in KNOWLEDGE DISCOVERY AND DATA MINING. CURRENT ISSUES AND NEW APPLICATIONS
  • Book

    TITLE

    Advances in Knowledge Discovery and Data Mining

    ISBN

    978-3-540-04760-5
    978-3-540-36175-6

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/3-540-36175-8_33

    DOI

    http://dx.doi.org/10.1007/3-540-36175-8_33

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1033080386


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information Systems", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Windsor", 
              "id": "https://www.grid.ac/institutes/grid.267455.7", 
              "name": [
                "School of Computer Science, University of Windsor, Windsor, Ontario, Canada, N9B 3P4"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lu", 
            "givenName": "Yi", 
            "id": "sg:person.015700476427.69", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015700476427.69"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Windsor", 
              "id": "https://www.grid.ac/institutes/grid.267455.7", 
              "name": [
                "School of Computer Science, University of Windsor, Windsor, Ontario, Canada, N9B 3P4"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ezeife", 
            "givenName": "C. I.", 
            "id": "sg:person.01200460536.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200460536.41"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/s0169-023x(01)00008-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001497929"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-45571-x_47", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007543846", 
              "https://doi.org/10.1007/3-540-45571-x_47"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s007780050083", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011103093", 
              "https://doi.org/10.1007/s007780050083"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0014140", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050497818", 
              "https://doi.org/10.1007/bfb0014140"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icde.1995.380415", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094007712"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2003", 
        "datePublishedReg": "2003-01-01", 
        "description": "Web access pattern tree algorithm mines web log access sequences by first storing the original web access sequence database on a prefix tree (WAP-tree). WAP-tree algorithm then mines frequent sequences from the WAP-tree by recursively re-constructing intermediate WAP-trees, starting with their suffix subsequences. This paper proposes an efficient approach for using the preorder linked WAP-trees with binary position codes assigned to each node, to mine frequent sequences, which eliminates the need to engage in numerous re-construction of intermediate WAP-trees during mining. Experiments show huge performance advantages for sequential mining using prefix linked WAP-tree technique.", 
        "editor": [
          {
            "familyName": "Whang", 
            "givenName": "Kyu-Young", 
            "type": "Person"
          }, 
          {
            "familyName": "Jeon", 
            "givenName": "Jongwoo", 
            "type": "Person"
          }, 
          {
            "familyName": "Shim", 
            "givenName": "Kyuseok", 
            "type": "Person"
          }, 
          {
            "familyName": "Srivastava", 
            "givenName": "Jaideep", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/3-540-36175-8_33", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": {
          "isbn": [
            "978-3-540-04760-5", 
            "978-3-540-36175-6"
          ], 
          "name": "Advances in Knowledge Discovery and Data Mining", 
          "type": "Book"
        }, 
        "name": "Position Coded Pre-order Linked WAP-Tree for Web Log Sequential Pattern Mining", 
        "pagination": "337-349", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/3-540-36175-8_33"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "9d970063d3d6641275a789923df55651eede2570fe88badc7c07fcf5819b5283"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1033080386"
            ]
          }
        ], 
        "publisher": {
          "location": "Berlin, Heidelberg", 
          "name": "Springer Berlin Heidelberg", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/3-540-36175-8_33", 
          "https://app.dimensions.ai/details/publication/pub.1033080386"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-15T22:56", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000263.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/3-540-36175-8_33"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-540-36175-8_33'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-540-36175-8_33'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-540-36175-8_33'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-540-36175-8_33'


     

    This table displays all metadata directly associated to this object as RDF triples.

    105 TRIPLES      23 PREDICATES      32 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/3-540-36175-8_33 schema:about anzsrc-for:08
    2 anzsrc-for:0806
    3 schema:author N59e0a889b00a4ad69f21c1746489ea40
    4 schema:citation sg:pub.10.1007/3-540-45571-x_47
    5 sg:pub.10.1007/bfb0014140
    6 sg:pub.10.1007/s007780050083
    7 https://doi.org/10.1016/s0169-023x(01)00008-8
    8 https://doi.org/10.1109/icde.1995.380415
    9 schema:datePublished 2003
    10 schema:datePublishedReg 2003-01-01
    11 schema:description Web access pattern tree algorithm mines web log access sequences by first storing the original web access sequence database on a prefix tree (WAP-tree). WAP-tree algorithm then mines frequent sequences from the WAP-tree by recursively re-constructing intermediate WAP-trees, starting with their suffix subsequences. This paper proposes an efficient approach for using the preorder linked WAP-trees with binary position codes assigned to each node, to mine frequent sequences, which eliminates the need to engage in numerous re-construction of intermediate WAP-trees during mining. Experiments show huge performance advantages for sequential mining using prefix linked WAP-tree technique.
    12 schema:editor N1cad3bedc02e4320a81d740ce35d4c16
    13 schema:genre chapter
    14 schema:inLanguage en
    15 schema:isAccessibleForFree true
    16 schema:isPartOf Necfd6acf7098427bbb1adb36b74bd235
    17 schema:name Position Coded Pre-order Linked WAP-Tree for Web Log Sequential Pattern Mining
    18 schema:pagination 337-349
    19 schema:productId N72da1541bf364678a1d60c860535a6f5
    20 Na2cbcc816dc140259ce903f660c16635
    21 Nbbcfc63effc2482f809a4d60290799dd
    22 schema:publisher Nb1207777b1b640acac8c821d585983cc
    23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033080386
    24 https://doi.org/10.1007/3-540-36175-8_33
    25 schema:sdDatePublished 2019-04-15T22:56
    26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    27 schema:sdPublisher Nc8ad5805f6c64f0f843815bd3f43d26f
    28 schema:url http://link.springer.com/10.1007/3-540-36175-8_33
    29 sgo:license sg:explorer/license/
    30 sgo:sdDataset chapters
    31 rdf:type schema:Chapter
    32 N1cad3bedc02e4320a81d740ce35d4c16 rdf:first Ne4899c3632814f8bb80779baf3f1741d
    33 rdf:rest Nf818992a6c5b46a19b989ef052e1acf8
    34 N2ebd4b6e08d74fee80853f4f2802dbdd rdf:first Nca434b926f394eb1aa384989ca01ab23
    35 rdf:rest rdf:nil
    36 N467add1d873f4df6982f829a80d27b43 schema:familyName Jeon
    37 schema:givenName Jongwoo
    38 rdf:type schema:Person
    39 N48e0e0e9839045d9bc2f9569571cc3ee schema:familyName Shim
    40 schema:givenName Kyuseok
    41 rdf:type schema:Person
    42 N59e0a889b00a4ad69f21c1746489ea40 rdf:first sg:person.015700476427.69
    43 rdf:rest Nb5211c119b894f6a829556df1b79bc08
    44 N72da1541bf364678a1d60c860535a6f5 schema:name doi
    45 schema:value 10.1007/3-540-36175-8_33
    46 rdf:type schema:PropertyValue
    47 Na2cbcc816dc140259ce903f660c16635 schema:name readcube_id
    48 schema:value 9d970063d3d6641275a789923df55651eede2570fe88badc7c07fcf5819b5283
    49 rdf:type schema:PropertyValue
    50 Nb1207777b1b640acac8c821d585983cc schema:location Berlin, Heidelberg
    51 schema:name Springer Berlin Heidelberg
    52 rdf:type schema:Organisation
    53 Nb5211c119b894f6a829556df1b79bc08 rdf:first sg:person.01200460536.41
    54 rdf:rest rdf:nil
    55 Nbbcfc63effc2482f809a4d60290799dd schema:name dimensions_id
    56 schema:value pub.1033080386
    57 rdf:type schema:PropertyValue
    58 Nc8ad5805f6c64f0f843815bd3f43d26f schema:name Springer Nature - SN SciGraph project
    59 rdf:type schema:Organization
    60 Nca434b926f394eb1aa384989ca01ab23 schema:familyName Srivastava
    61 schema:givenName Jaideep
    62 rdf:type schema:Person
    63 Ncb4a9be55d8b4a088f166e1ebf371d6e rdf:first N48e0e0e9839045d9bc2f9569571cc3ee
    64 rdf:rest N2ebd4b6e08d74fee80853f4f2802dbdd
    65 Ne4899c3632814f8bb80779baf3f1741d schema:familyName Whang
    66 schema:givenName Kyu-Young
    67 rdf:type schema:Person
    68 Necfd6acf7098427bbb1adb36b74bd235 schema:isbn 978-3-540-04760-5
    69 978-3-540-36175-6
    70 schema:name Advances in Knowledge Discovery and Data Mining
    71 rdf:type schema:Book
    72 Nf818992a6c5b46a19b989ef052e1acf8 rdf:first N467add1d873f4df6982f829a80d27b43
    73 rdf:rest Ncb4a9be55d8b4a088f166e1ebf371d6e
    74 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    75 schema:name Information and Computing Sciences
    76 rdf:type schema:DefinedTerm
    77 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
    78 schema:name Information Systems
    79 rdf:type schema:DefinedTerm
    80 sg:person.01200460536.41 schema:affiliation https://www.grid.ac/institutes/grid.267455.7
    81 schema:familyName Ezeife
    82 schema:givenName C. I.
    83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200460536.41
    84 rdf:type schema:Person
    85 sg:person.015700476427.69 schema:affiliation https://www.grid.ac/institutes/grid.267455.7
    86 schema:familyName Lu
    87 schema:givenName Yi
    88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015700476427.69
    89 rdf:type schema:Person
    90 sg:pub.10.1007/3-540-45571-x_47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007543846
    91 https://doi.org/10.1007/3-540-45571-x_47
    92 rdf:type schema:CreativeWork
    93 sg:pub.10.1007/bfb0014140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050497818
    94 https://doi.org/10.1007/bfb0014140
    95 rdf:type schema:CreativeWork
    96 sg:pub.10.1007/s007780050083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011103093
    97 https://doi.org/10.1007/s007780050083
    98 rdf:type schema:CreativeWork
    99 https://doi.org/10.1016/s0169-023x(01)00008-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001497929
    100 rdf:type schema:CreativeWork
    101 https://doi.org/10.1109/icde.1995.380415 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094007712
    102 rdf:type schema:CreativeWork
    103 https://www.grid.ac/institutes/grid.267455.7 schema:alternateName University of Windsor
    104 schema:name School of Computer Science, University of Windsor, Windsor, Ontario, Canada, N9B 3P4
    105 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...