Parametric Resonance Near Hopf-Turing Instability Boundary View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2006-01-01

AUTHORS

A. Bhatacharyay , J.K. Bhattacharjee

ABSTRACT

Dissipative chemical systems which are having to interact with its environment do not generally see the feeding or removal of species in a uniform or constant manner as is generally taken in simpler form of the theory of an ideal system. There are variations and an expansion of them in Fourier modes can always make some of them vulnerable (or useful if we have some control on it) for the present state of the system. A systematic study of parametric resonance is therefore very important for such systems. Surface wave of fluids generated by vertical oscillation is a well known example where parametric resonance breaks the continuous spatial symmetry [1–3]. In reaction diffusion systems the effect ofparametric resonance has been widely studied to see frequency entrainment and multiphaseoscillation [4–7]. More... »

PAGES

183-189

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/3-540-33878-0_15

DOI

http://dx.doi.org/10.1007/3-540-33878-0_15

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1020957427


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Dipartimento di Fisica \u201cG. Galilei\u201d, Universit\u00e0 di padova, Italy", 
          "id": "http://www.grid.ac/institutes/grid.5608.b", 
          "name": [
            "Dipartimento di Fisica \u201cG. Galilei\u201d, Universit\u00e0 di padova, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bhatacharyay", 
        "givenName": "A.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Theoretical Physics, Indian Association for the Cultivation of Science, India", 
          "id": "http://www.grid.ac/institutes/grid.417929.0", 
          "name": [
            "Department of Theoretical Physics, Indian Association for the Cultivation of Science, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bhattacharjee", 
        "givenName": "J.K.", 
        "id": "sg:person.015365735162.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015365735162.55"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2006-01-01", 
    "datePublishedReg": "2006-01-01", 
    "description": "Dissipative chemical systems which are having to interact with its environment do not generally see the feeding or removal of species in a uniform or constant manner as is generally taken in simpler form of the theory of an ideal system. There are variations and an expansion of them in Fourier modes can always make some of them vulnerable (or useful if we have some control on it) for the present state of the system. A systematic study of parametric resonance is therefore very important for such systems. Surface wave of fluids generated by vertical oscillation is a well known example where parametric resonance breaks the continuous spatial symmetry [1\u20133]. In reaction diffusion systems the effect ofparametric resonance has been widely studied to see frequency entrainment and multiphaseoscillation [4\u20137].", 
    "editor": [
      {
        "familyName": "Baglio", 
        "givenName": "Salvatore", 
        "type": "Person"
      }, 
      {
        "familyName": "Bulsara", 
        "givenName": "Adi", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/3-540-33878-0_15", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-33877-2", 
        "978-3-540-33878-9"
      ], 
      "name": "Device Applications of Nonlinear Dynamics", 
      "type": "Book"
    }, 
    "keywords": [
      "parametric resonance", 
      "surface waves", 
      "vertical oscillations", 
      "instability boundaries", 
      "continuous spatial symmetry", 
      "Fourier modes", 
      "such systems", 
      "entrainment", 
      "system", 
      "systematic study", 
      "waves", 
      "diffusion system", 
      "fluid", 
      "boundaries", 
      "removal", 
      "constant manner", 
      "present state", 
      "chemical systems", 
      "removal of species", 
      "mode", 
      "resonance", 
      "simple form", 
      "oscillations", 
      "spatial symmetry", 
      "ideal system", 
      "environment", 
      "variation", 
      "expansion", 
      "frequency entrainment", 
      "example", 
      "reaction diffusion system", 
      "theory", 
      "state", 
      "form", 
      "study", 
      "symmetry", 
      "manner", 
      "feeding", 
      "species", 
      "Dissipative chemical systems", 
      "effect ofparametric resonance", 
      "ofparametric resonance", 
      "multiphaseoscillation", 
      "Parametric Resonance Near Hopf-Turing Instability Boundary", 
      "Resonance Near Hopf-Turing Instability Boundary", 
      "Near Hopf-Turing Instability Boundary", 
      "Hopf-Turing Instability Boundary"
    ], 
    "name": "Parametric Resonance Near Hopf-Turing Instability Boundary", 
    "pagination": "183-189", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1020957427"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/3-540-33878-0_15"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/3-540-33878-0_15", 
      "https://app.dimensions.ai/details/publication/pub.1020957427"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-12-01T20:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/chapter/chapter_244.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/3-540-33878-0_15"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-540-33878-0_15'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-540-33878-0_15'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-540-33878-0_15'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-540-33878-0_15'


 

This table displays all metadata directly associated to this object as RDF triples.

121 TRIPLES      23 PREDICATES      71 URIs      64 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/3-540-33878-0_15 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N42c8caf8140d453bb60387bad89249e0
4 schema:datePublished 2006-01-01
5 schema:datePublishedReg 2006-01-01
6 schema:description Dissipative chemical systems which are having to interact with its environment do not generally see the feeding or removal of species in a uniform or constant manner as is generally taken in simpler form of the theory of an ideal system. There are variations and an expansion of them in Fourier modes can always make some of them vulnerable (or useful if we have some control on it) for the present state of the system. A systematic study of parametric resonance is therefore very important for such systems. Surface wave of fluids generated by vertical oscillation is a well known example where parametric resonance breaks the continuous spatial symmetry [1–3]. In reaction diffusion systems the effect ofparametric resonance has been widely studied to see frequency entrainment and multiphaseoscillation [4–7].
7 schema:editor N583583baa9284c5ebc9c0c6942c99a82
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Nd1dda4e4134e4669b791aba3f6586f3a
12 schema:keywords Dissipative chemical systems
13 Fourier modes
14 Hopf-Turing Instability Boundary
15 Near Hopf-Turing Instability Boundary
16 Parametric Resonance Near Hopf-Turing Instability Boundary
17 Resonance Near Hopf-Turing Instability Boundary
18 boundaries
19 chemical systems
20 constant manner
21 continuous spatial symmetry
22 diffusion system
23 effect ofparametric resonance
24 entrainment
25 environment
26 example
27 expansion
28 feeding
29 fluid
30 form
31 frequency entrainment
32 ideal system
33 instability boundaries
34 manner
35 mode
36 multiphaseoscillation
37 ofparametric resonance
38 oscillations
39 parametric resonance
40 present state
41 reaction diffusion system
42 removal
43 removal of species
44 resonance
45 simple form
46 spatial symmetry
47 species
48 state
49 study
50 such systems
51 surface waves
52 symmetry
53 system
54 systematic study
55 theory
56 variation
57 vertical oscillations
58 waves
59 schema:name Parametric Resonance Near Hopf-Turing Instability Boundary
60 schema:pagination 183-189
61 schema:productId Nb41033c120ee407e8299d84d8a761d74
62 Nf22a706f7d0a4b8695e20faf747c5f33
63 schema:publisher Ne06cefc6b184475b82527f323379431d
64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020957427
65 https://doi.org/10.1007/3-540-33878-0_15
66 schema:sdDatePublished 2021-12-01T20:02
67 schema:sdLicense https://scigraph.springernature.com/explorer/license/
68 schema:sdPublisher Nb5f132e12a0547bf956089b41cf0b528
69 schema:url https://doi.org/10.1007/3-540-33878-0_15
70 sgo:license sg:explorer/license/
71 sgo:sdDataset chapters
72 rdf:type schema:Chapter
73 N0eb35f9513724d739b1eed0b2b88bf11 schema:familyName Baglio
74 schema:givenName Salvatore
75 rdf:type schema:Person
76 N42c8caf8140d453bb60387bad89249e0 rdf:first N7fa981f7f0274893970579361994fd5d
77 rdf:rest N64656b9d8bd04fc0a3212198008fab45
78 N583583baa9284c5ebc9c0c6942c99a82 rdf:first N0eb35f9513724d739b1eed0b2b88bf11
79 rdf:rest N8c52c4ad84e744aca64b352fadb4276f
80 N64656b9d8bd04fc0a3212198008fab45 rdf:first sg:person.015365735162.55
81 rdf:rest rdf:nil
82 N7c009c7a641d4e2b97604cde32498d53 schema:familyName Bulsara
83 schema:givenName Adi
84 rdf:type schema:Person
85 N7fa981f7f0274893970579361994fd5d schema:affiliation grid-institutes:grid.5608.b
86 schema:familyName Bhatacharyay
87 schema:givenName A.
88 rdf:type schema:Person
89 N8c52c4ad84e744aca64b352fadb4276f rdf:first N7c009c7a641d4e2b97604cde32498d53
90 rdf:rest rdf:nil
91 Nb41033c120ee407e8299d84d8a761d74 schema:name dimensions_id
92 schema:value pub.1020957427
93 rdf:type schema:PropertyValue
94 Nb5f132e12a0547bf956089b41cf0b528 schema:name Springer Nature - SN SciGraph project
95 rdf:type schema:Organization
96 Nd1dda4e4134e4669b791aba3f6586f3a schema:isbn 978-3-540-33877-2
97 978-3-540-33878-9
98 schema:name Device Applications of Nonlinear Dynamics
99 rdf:type schema:Book
100 Ne06cefc6b184475b82527f323379431d schema:name Springer Nature
101 rdf:type schema:Organisation
102 Nf22a706f7d0a4b8695e20faf747c5f33 schema:name doi
103 schema:value 10.1007/3-540-33878-0_15
104 rdf:type schema:PropertyValue
105 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
106 schema:name Chemical Sciences
107 rdf:type schema:DefinedTerm
108 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
109 schema:name Physical Chemistry (incl. Structural)
110 rdf:type schema:DefinedTerm
111 sg:person.015365735162.55 schema:affiliation grid-institutes:grid.417929.0
112 schema:familyName Bhattacharjee
113 schema:givenName J.K.
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015365735162.55
115 rdf:type schema:Person
116 grid-institutes:grid.417929.0 schema:alternateName Department of Theoretical Physics, Indian Association for the Cultivation of Science, India
117 schema:name Department of Theoretical Physics, Indian Association for the Cultivation of Science, India
118 rdf:type schema:Organization
119 grid-institutes:grid.5608.b schema:alternateName Dipartimento di Fisica “G. Galilei”, Università di padova, Italy
120 schema:name Dipartimento di Fisica “G. Galilei”, Università di padova, Italy
121 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...